【ComfyUI插件】ComfyUI核心节点(一)

本文详细介绍了ComfyUI的8个核心节点,包括Load Checkpoint、Load Checkpoint with config、CLIP Set Last Layer等,提供了节点的功能、输入输出参数说明,帮助用户理解并掌握在文生图工作流中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知识星球已更新100+节点,每个节点详解讲解并且给出示例工作流,现阶段门票只需50元,欢迎大家加入很向我提问!!!!!!

知识星球ID:71297236

前言:

ComfyUI的学习是一场持久战,当你掌握ComfyUI的安装和运行之后,会出现琳琅满目的节点,当各种各样的工作流映入眼帘,往往难以接受纷繁复杂的节点种类,本篇文章将以通俗易懂的语言,对ComfyUI的各种核心节点进行系统的梳理和参数的详解,祝愿大家在学习的过程中掌握自我思考的能力,并且切实的掌握和理解各个节点的用法与功能。


目录:

一、Load Checkpoint节点

二、Load Checkpoint with config节点

三、CLIP Set Last Layer节点

四、CLIP Text Encode (Prompt)节点

五、KSampler节点

六、Empty Latent image节点

七、VAE Decode节点

八、Preview image节点

文生图示例工作流


一、Load Checkpoint节点

节点功能:该节点用来加载checkpoint大模型,常用的大模型有sd1.0,sd1.5,sd2.0,sdxl等等。

输入:

扩散模型的路径      **假如配置好了路径文件,模型可自行选择**

输出:

MODEL   ->    该模型用于对潜空间图片进行去噪
CLIP    ->    该模型用于对Prompt进行编码
VAE     ->    该模型用于对潜在空间的图像进行编码和解码

注意:StableDIffusion大模型(checkpoint)内置有CLIP和VAE模型。

二、Load Checkpoint with config节点

节点功能:该节点用来加载checkpoint大模型,常用的大模型有sd1.0,sd1.5,sd2.0,sdxl等等。

输入:

模型的配置文件,根据配置文件加载模型      **配置文件放在../models/configs文件夹内**
扩散模型的路径                            **假如配置好了路径文件,模型可自行选择**

输出:

MODEL   ->    该模型用于对潜空间图片进行去噪
CLIP    ->    该模型用于对Prompt进行编码
VAE     ->    该模型用于对潜在空间的图像进行编码和解码

注意:常规的Load Checkpoint节点,可以自行搜索并加载相应的配置文件

三、CLIP Set Last Layer节点

节点功能:该节点用来设置选择CLIP模型在第几层的输出数据。

输入:

clip    ->     接收用于对prompt进行编码的CLIP模型  **比如来自Checkpoint的CLIP模型**

参数:

stop_at_clip_layer     ->    设置CLIP模型在第几层进行数据输出

注意:CLIP模型对prompt进行编码的过程中,可以理解为对原始文本进行层层编码,该参数就是选择我们需要的一层编码信息,去引导模型扩散。

输出:

CLIP     ->    具有新设置的输出层的CLIP模型。

四、CLIP Text Encode (Prompt)节点

节点功能:该节点用来输入正反向提示词,也就是“文生图”,“文生视频”中“文”的输入位置。

输入:

clip    ->     接收用于对prompt进行编码的CLIP模型  

参数:

文本输入框     ->    输入需要模型生成的文本信息    **正/反向提示词**

输出:

COMDITIONING     ->    将文本信息通过CLIP模型编码,形成引导模型扩散的条件信息

注意:当前prompt仅支持英文的输入。

五、KSampler节点

节点功能:该节点用来对潜空间噪声图进行逐步去噪的操作。 **注意去噪的过程是在潜空间进行处理**

输入:

model       ->     接收来自大模型的数据流       
positive    ->     接收经过clip编码后的正向提示词的条件信息  **注意是条件信息,即COMDITIONING**
negative    ->     接收经过clip编码后的反向提示词的条件信息  **注意是条件信息,即COMDITIONING**
latent_image    ->    接收潜空间图像信息

参数:

seed     ->    该参数表示去噪过程中,噪声生成使用的随机数种子    **种子数有上限**
control_after_generate     ->      表示产生seed之后的控制方式,fixed代表固定种子,increment代表每次 增加1,decrement代表每次减少1,randomize表示种子随机选择。
steps    ->    该参数表示对潜空间图像进行指定步数的去噪。
cfg      ->    该参数为提示词引导系数,即提示词对最终结果会产生多大的影响。  **过高会产生负面影响**
sampler_name     ->   该参数表示您所选择的采样器名称 **采样器种类多且杂,大家可以自行实验验证结果**
scheduler        ->   该参数表示您所选择调度器的名称  **采样器和调度器的选择可以使用推荐配置**
denoise  ->  该参数表示去噪幅度/重绘幅度,值越大对图片产生的影响和变化越大   **高清修复一般使用较低的值**

输出:

LATENT     ->    经过KSampler采样器进行去噪后的潜空间图像

六、Empty Latent image节点

节点功能:该节点用来生成纯噪声的潜空间图像,并且设置图像的比例。

参数:

width     ->    要生成潜空间图像的宽度
height    ->    要生成潜空间图像的高度                   
batch_size     ->    需要生成多少张潜空间图像

注意:SD1.0,SD1.5等模型最常使用512*512的尺寸。 SDXL,SD turbo等最常使用1024*1024的尺寸。

输出:

LATENT     ->    输出指定形状和数量的潜空间图像

七、VAE Decode节点

节点功能:该节点用来将潜空间图像解码到像素级的图像。

输入:

samples    ->     接收经过KSampler采样器处理后的潜空间图像  
vae        ->     接收对潜空间图像解码使用的vae模型    **大部分checkpoint自带vae**  

输出:

IMAGE      ->      输出经过vae解码后的像素级图像

八、Preview image节点

节点功能:该节点用来预览image图像。

输入:

images    ->     预览图像  

文生图示例工作流:

学习完以上节点,您就可以搭建第一个“文生图”工作流了

这里使用了SDXL的大模型,所以latent图像设置1024*1024,正向提示词输入1girl,反向提示词输入NSFW避免出现不能播的内容,采样器使用默认设置,最终出图如下:


孜孜不倦,方能登峰造极。坚持不懈,乃是成功关键。


### ComfyUI 节点功能与使用教程 #### 、理解ComfyUI节点的概念 ComfyUI采用基于节点的架构,其中UI元素被表示为相互连接的节点。每个节点封装了特定的功能或行为,这使得UI开发不仅模块化而且高度可扩展[^2]。 #### 二、常见类型的节点及其用途 1. **输入/输出节点** 这些节点用于向工作流引入数据或将处理后的结果导出。例如,“Image Input”允许用户加载图片文件作为后续操作的对象;而“Save Image”则负责保存最终生成的作品到本地磁盘上。 2. **图像处理节点** 此类别下的组件专注于对视觉素材执行各种变换和调整动作。“Resize Crop”能够改变画布尺寸大小而不失真;还有专门针对色彩校正的任务如“Color Balance”。 3. **合成与混合节点** 当涉及到多层叠加效果时就轮到了这类工具大显身手。“Alpha Composite”按照透明度比例融合两张或多张图层;另外也有实现渐变过渡等功能的选择。 4. **特效应用节点** 想要给作品增添独特风格?不妨试试看这里的选项吧!无论是模拟自然现象还是创造抽象艺术感都轻而易举。“Noise Generator”可以制造随机噪波纹理来增加细节层次;“Blur Filter”提供多种模糊模式供挑选。 5. **控制流程节点** 对于复杂的工作流而言不可或缺的部分就是逻辑判断机制。“If Condition”依据设定条件决定分支走向;通过循环结构反复迭代相同的操作直到满足终止标准也是可行方案之。 6. **自定义脚本节点** 如果内置资源无法完全覆盖需求,则可以通过编写Python代码的方式来自行设计新的能力。“Script Executor”接收外部导入.py文件并运行其中定义的方法函数,在此基础上几乎没有什么是不可能完成的任务了[^3]。 ```python def custom_node_example(input_image, parameter_value): """ A simple example of a Python function that could be used within a custom node. Args: input_image (PIL.Image): The image to process. parameter_value (float): An adjustable value affecting the processing. Returns: PIL.Image: Processed output image. """ from PIL import ImageEnhance enhancer = ImageEnhance.Brightness(input_image) enhanced_output = enhancer.enhance(parameter_value) return enhanced_output ``` 7. **模型调用节点** 特别值得提的是,ComfyUI还支持集成机器学习算法库中的预训练模型来进行高级别的自动化创作活动。“Stable Diffusion Model Call”便是这样个接口实例,它能根据提示词自动绘制出相应的图案[^1]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值