POJ 2513 字典树+一笔画问题

http://poj.org/problem?id=2513

大致题意:
给定一些木棒,木棒两端都涂上颜色,求是否能将木棒首尾相接,连成一条直线,要求不同木棒相接的一边必须是相同颜色的。

解题思路:
可以用图论中欧拉路的知识来解这道题,首先可以把木棒两端看成节点,把木棒看成边,这样相同的颜色就是同一个节点
问题便转化为:
给定一个图,是否存在“一笔画”经过涂中每一点,以及经过每一边一次。
这样就是求图中是否存在欧拉路Euler-Path。
回顾经典的“七桥问题”,相信很多同学马上就明白了什么是 欧拉路 了,这里不多作解释。

由图论知识可以知道,无向图存在欧拉路的充要条件为:
① 图是连通的;
② 所有节点的度为偶数,或者有且只有两个度为奇数的节点。

其中①图的连通性用程序判断比较麻烦,先放一下。
这里先说说②关于度数的判断方法:

Blue
Magenta
Violet
Cyan
Red
节点的度用颜色出现次数来统计,如样例中,蓝色blue出现三次(不管是出度还是入度),那么blue结点的度就为3,同样地,我们也可以通过输入得到其他全部结点的度,于是,我们有:
Blue=3
Red=2
Violet=1
Cyan=2
Magenta=2

用一个一维数组就能记录了,然后分别 模2,就能判断颜色结点的奇偶性
只要奇度数的结点数的个数 = 1 或 >=3 ,即使①图连通,欧拉路也必不存在

但是若 奇度数的结点数的个数 为0或 ==2,那么我们继续进行①图的连通性证明:

证明①图的连通性,使用并查集MergeSet是非常高效的方法。
基本方法:
初始化所输入的n个结点为n棵树,那么就有一个n棵树的森林,此时每棵树的有唯一的结点(根),该结点的祖先就是它本身。再通过不断地输入边,得到某两个结点(集合)之间的关系,进而合并这两个结点(集合),那么这两个集合就构成一个新的集合,集合内的所有结点都有一个共同的新祖先,就是这个集合(树)的根。
最后只要枚举任意一个结点,他们都具有相同的祖先,那么就能证明图时连通的了。

但是单纯使用并查集是会超时的,因为这样会导致每次寻找某个结点的祖先时,平均都会花费O(n/2)时间,最坏情况,当n==50W时,O(n/2)大概为25ms,那么要确定50W个结点是否有共同祖先时,总费时为50W*25ms ,铁定超,不算了= =

因此必须使用并查集时必须压缩路径,前几次搜索某个结点k的祖先时,在不断通过父亲结点寻找祖先结点时,顺便把从k到最终祖先结点S中经过的所有结点的祖先都指向S,那么以后的搜索就能把时间降低到O(1)

由于并查集必须利用 数组的下标 与 存储的对象,使用int是比较方便的处理方法,但是题目的“颜色结点”是string,不方便用来使用并查集,即使用map也不行,虽然STL的map是基于hash的基础上,但并不高效,在本题中使用会超时。

为此可以使用Trie字典树,得到每个颜色单词对应的int编号id ,可以说利用Trie把string一一映射到int,是本题后续处理的关键所在。关于动态创建字典树的方法去百度,这里不多说,下面只用用一个图简单说明一下用Trie字典树标识第一个颜色单词blue:

这个题目涉及了多个基本数据结构和算法,综合性很强,非常有代表性,能够A到这题确实是受益良多。

#include <iostream>
#include <string.h>
#define maxs 500010
#include <iostream>
#include <stdio.h>
#define MME(i,j) memset(i,j,sizeof(i))
using namespace std;
int father[maxs],deg[maxs];
char head[15],tail[15];

int find_father(int x)
{
    if(x==father[x])
        return x;
    return father[x]=find_father(father[x]);   //并查集,路径压缩找祖宗
}

/*
void joint(int x,int y)
{
    int fx=find_father(x);
    int fy=find_father(y);  这里不需要联合,到时直接判断就好
    if(fx!=fy)
        father[fy]=fx;
}*/

typedef struct node
{
    int num;
    struct node *nexts[26];
}Trienode,*trie;//Trie 树

trie Creat()
{
    trie p=new Trienode;
    p->num=0;
    MME(p->nexts,0);
    return p;
}

trie root;

void Insert(char *s,trie root,int num)
{
    trie p=root;
    int i=0,id;
    while(s[i])
    {
        id=s[i]-'a';
        if(p->nexts[id]==NULL)
         {
            p->nexts[id]=Creat();
         }
        p=p->nexts[id];
        i++;
    }
    p->num=num;
}

int Find(char *s,trie root)
{
    trie p=root;
    int i=0,id;
    while(s[i])
    {
        id=s[i]-'a';
        if(p->nexts[id]==NULL)
        {
                return 0;//看当前串是否出现过,0为没出现
        }
        p=p->nexts[id];
        i++;
    }
        return p->num;
}

void init()
{
    for(int i=0;i<=500001;i++)
    {
        father[i]=i;//初始化
        deg[i]=0;
    }
}

void clear_trie(trie root)
{
    for(int i=0;i<26;i++)
        if(root->nexts[i])
            clear_trie(root->nexts[i]);
    delete root;
}

bool ok(int cnt)
{
    int i,temp,k,odd=0;
    k=find_father(1);//因为一笔画,那么所以节点的祖宗全是一个。
    for(int i=1;i<=cnt;i++)
    {
        temp=find_father(k);
        if( temp!=k)
            return false;
        if(deg[i]%2)
            odd++;
    }
    if(odd<=2)
        return 1;
    return 0;
}

int main()
{
    int a,b,cnt=1;
    int ancester1,ancester2;
    init();
    root=Creat();
    while(~scanf("%s %s",head,tail))
    {
        a=Find(head,root);
        b=Find(tail,root);

        if(!a) Insert(head,root,a=cnt++); // a b 为0时,更改cnt的值
        if(!b) Insert(tail,root,b=cnt++);
        deg[a]++;
        deg[b]++;//度
        ancester1=find_father(a);
        ancester2=find_father(b);
        if(ancester1!=ancester2)
           father[ancester2]=ancester1;
    }
    if(ok(cnt))
        puts("Possible");
    else puts("Impossible");
    clear_trie(root);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值