NYOJ—一笔画问题(欧拉回路)

描述
zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来。
规定,所有的边都只能画一次,不能重复画。

输入
第一行只有一个正整数N(N<=10)表示测试数据的组数。
每组测试数据的第一行有两个正整数P,Q(P <=1000,Q <=2000),分别表示这个画中有多少个顶点和多少条连线。(点的编号从1到P)
随后的Q行,每行有两个正整数A,B(0 < A,B < P),表示编号为A和B的两点之间有连线。
输出
如果存在符合条件的连线,则输出”Yes”,
如果不存在符合条件的连线,输出”No”。
样例输入

2
4 3
1 2
1 3
1 4
4 5
1 2
2 3
1 3
1 4
3 4

样例输出

No
Yes

分析
我当时做到这题的时候并没有往欧拉回路上去想,只是想单纯的用DFS来解决,就有了下面的代码:

#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 1000+10;
int V,E;            //顶点数V,边数E
vector<int> d[maxn];//用vector来实现邻接链表
int p[maxn][maxn];  //用记忆化
int k;              //k为dfs的次数,如果k=E,那么便可以一笔画

void dfs(int s)
{
    for(int i=0;i<d[s].size();i++)
    {

        if(p[s][d[s][i]] == 1 && p[d[s][i]][s] == 1) 
        {
            continue;
        }
        k++;
        p[s][d[s][i]] = p[d[s][i]][s] = 1;
        dfs(d[s][i]);
    }
    if(k!=E)
    k = k-1;       //注意要回到前一个状态
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        memset(d,0,sizeof(d));
        scanf("%d%d",&V,&E);
        int s,t;
        for(int i=0;i<E;i++)
        {
            scanf("%d%d",&s,&t);
            d[s].push_back(t);
            d[t].push_back(s);
        }
        int ok = 0;
        for(int i=1;i<=V;i++)
        {
            memset(p,0,sizeof(p)); 
            k=0;
            dfs(i);
            if(k==E)
            {
                ok = 1;
                break;
            }
        }
        if(ok) printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}
/*虽然AC过去了,但是时间复杂度非常高,所以需要找一个更好的方法。*/

一笔画问题是离散数学中的一个经典问题,这样便便涉及到了图论中的一个重要的一个类型——欧拉回路
后来就去查了一下欧拉回路的一些文章。
一笔画图形必须符合两个条件:1.图必须是连通的。2.奇点数目是0或者2。

而数学家欧拉找到一笔画的规律是:
⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
2.凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。

所以我们这一题另一个思路是先判断一个图是否为连通图,如果不是,那么直接输出“No”;如果是,那么就需要再判断每一个顶点的度数,如果奇点的数目为0或2则输出”Yes”,否则输出”No”。

**这里判断无向图是否连通运用了并查集这个技巧。
(并查集的实现参考博客:
http://blog.csdn.net/dellaserss/article/details/7724401/
写得不是一般的好啊!我什么时候能写出来那么好的博客呢?QAQ)

最后的实现代码:

#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 1000+10;
int V,E;
int d[maxn];          //记录每个顶点的度数
int pre[maxn];

/*初始化*/ 
void init()
{
    for(int i=1; i<=V; i++)
    { 
        pre[i] = i; //父节点为自己
        d[i] = 0;   //度数为0
    }
}

/*查找根节点*/
int find(int x)
{
    int r = x;
    while(r!=pre[r])
    r = pre[r];   

    int i = x,j;  //路径压缩 
    while(i != r)
    {
        j = pre[i];
        pre[i] = r;
        i = j;
    }
    return r;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        init();
        scanf("%d%d",&V,&E);
        int s,t;
        for(int i=0;i<E;i++)
        {
            scanf("%d%d",&s,&t);
            int fx = find(s);
            int fy = find(t);
            if(fx != fy)
            {
                pre[fx] = fy;   
            } 
            d[s]++;
            d[t]++;
        }
        int k = 0;//图中奇度点的个数 
        int ok = 0;
        for(int i=1;i<=V;i++)
        {
            if(pre[i] == i)
            {
                ok++;
            }
            if(d[i]%2==1)
            {
                k++;
            }
        }
        if(V == 1) printf("Yes\n");
        else{
            if(ok == 1 && (k == 0 || k == 2))
            {
                printf("Yes\n");
            }
            else{
                printf("No\n");
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值