Task01:逻辑回归的理论--阿里云天池

逻辑回归是监督学习中用于分类问题的算法,与线性回归不同,它通过非线性运算将连续预测值转换为离散预测。激活函数如sigmoid、RELU和双曲正切在其中起到关键作用,sigmoid常用于二元分类,将结果映射到0-1区间以判断分类。逻辑回归本质上是计算正确分类的概率问题。
摘要由CSDN通过智能技术生成

逻辑回归与线性回归同属监督学习的范畴,前者输出离散预测值而后者输出连续预测值,所以前者通常应用于分类问题。

需要强调,线性回归通常并不适合解决分类问题。因为拟合结果受单一样本点尤其是极端样本点的影响过大,所以训练出来的线性函数往往很难适配训练集。故而对于分类问题我们才设计出了有别于线性回归的新算法,逻辑回归算法。

逻辑回归本质上就是在线性回归的基础上增加了一层非线性运算,从而把对数据的线性拟合转变为了非线性拟合,进而通过人为地附加判别阈值,完成对连续运算结果的离散化。

施加在线性回归上的非线性函数即被称为逻辑回归所采用的激活函数,常用的有sigmoid函数,RELU函数和双曲正切函数。三者的差别主要体现在用于训练模型的梯度下降的过程中,sigmoid函数和双曲正切函数是业界早期的通用方案,目前则普遍采用RELU函数。

通过以上激活函数对训练集所拟合出来的非线性函数,它的物理意义其实是在计算正确分类的概率。逻辑回归本质上是一个概率问题,这是很多人没有意识到的。

以sigmoid函数拟合二元分类问题为例,该激活函数将实数域折合至0~1的范围,而凡是使预测输出大于0.5的样本点,皆被分作正类且正确的概率超过50%,反之同理不再赘述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值