[NOIP1998 普及组] 幂次方

题目描述

任何一个正整数都可以用 22 的幂次方表示。例如 137=2^7+2^3+2^0137=27+23+20。

同时约定次方用括号来表示,即 a^bab 可表示为 a(b)a(b)。

由此可知,137137 可表示为 2(7)+2(3)+2(0)2(7)+2(3)+2(0)

进一步:

7= 2^2+2+2^07=22+2+20 ( 2^121 用 22 表示),并且 3=2+2^03=2+20。

所以最后 137137 可表示为 2(2(2)+2+2(0))+2(2+2(0))+2(0)2(2(2)+2+2(0))+2(2+2(0))+2(0)。

又如 1315=2^{10} +2^8 +2^5 +2+11315=210+28+25+2+1

所以 13151315 最后可表示为 2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)。

输入格式

一行一个正整数 nn。

输出格式

符合约定的 nn 的 0, 20,2 表示(在表示中不能有空格)。

输入输出样例

输入 #1复制

1315

输出 #1复制

2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

说明/提示

【数据范围】

对于 100\%100% 的数据,1 \le n \le 2 \times {10}^41≤n≤2×104。

NOIP1998 普及组 第三题

 

#####这道题其实不算难=-=

#####我的思路是这样的:

#####定义divide(int x)函数,其实就是本程序的核心了,这个函数先分解传进来的数,例如137就分解为[7,3,0],再对每一项输出,如果不是0或1就再递归一层,否则输出2(0)或2,因为数据量不大,所以这样是不会超时的

#####具体见代码:

#####1、准备部分

#include <iostream> //不解释
#include <cmath> //其中有log2(x)和pow(x,y)函数,具体作用往下看
using namespace std;

#####2、边分解边输出边递归的divide函数

void divide(int x)
{
    bool flag = false; //...判断是否是第一个,如果是的话就不输出加号
    while (x != 0)
    {
        int t = int(log2(x));
        /*
        log2(x)这个函数求以2为底x的对数,例如log2(8)返回3,因为2^3=8
        而这里把返回值强制转换为int是为了找到离x最近又小于x的能表示为2^k的数
        例如int(log2(137))就能返回7,而2^7=128,恰为离137最近的能表示为2^k的数
        */
        if (flag) cout << "+"; //开头不输出加号
        if (t == 1) cout << "2"; //如果这一项是1,输出2,不递归
        else if (t == 0) cout << "2(0)"; //如果这一项是0,输出2(0),不递归
        else
        {
            cout << "2(";
            divide(t); //递归一层,把括号里的数分解输出
            cout << ")";
        }
        x -= pow(2,t); //继续处理下一项
        flag = true;
    }
}

#####3.根本不需要解释的主程序

int main()
{
    int n;
    cin >> n;
    divide(n);
    return 0;
}

#####完结撒花=-=

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值