题目描述
任何一个正整数都可以用 22 的幂次方表示。例如 137=2^7+2^3+2^0137=27+23+20。
同时约定次方用括号来表示,即 a^bab 可表示为 a(b)a(b)。
由此可知,137137 可表示为 2(7)+2(3)+2(0)2(7)+2(3)+2(0)
进一步:
7= 2^2+2+2^07=22+2+20 ( 2^121 用 22 表示),并且 3=2+2^03=2+20。
所以最后 137137 可表示为 2(2(2)+2+2(0))+2(2+2(0))+2(0)2(2(2)+2+2(0))+2(2+2(0))+2(0)。
又如 1315=2^{10} +2^8 +2^5 +2+11315=210+28+25+2+1
所以 13151315 最后可表示为 2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)。
输入格式
一行一个正整数 nn。
输出格式
符合约定的 nn 的 0, 20,2 表示(在表示中不能有空格)。
输入输出样例
输入 #1复制
1315
输出 #1复制
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
说明/提示
【数据范围】
对于 100\%100% 的数据,1 \le n \le 2 \times {10}^41≤n≤2×104。
NOIP1998 普及组 第三题
#####这道题其实不算难=-=
#####我的思路是这样的:
#####定义divide(int x)函数,其实就是本程序的核心了,这个函数先分解传进来的数,例如137就分解为[7,3,0],再对每一项输出,如果不是0或1就再递归一层,否则输出2(0)或2,因为数据量不大,所以这样是不会超时的
#####具体见代码:
#####1、准备部分
#include <iostream> //不解释
#include <cmath> //其中有log2(x)和pow(x,y)函数,具体作用往下看
using namespace std;
#####2、边分解边输出边递归的divide函数
void divide(int x)
{
bool flag = false; //...判断是否是第一个,如果是的话就不输出加号
while (x != 0)
{
int t = int(log2(x));
/*
log2(x)这个函数求以2为底x的对数,例如log2(8)返回3,因为2^3=8
而这里把返回值强制转换为int是为了找到离x最近又小于x的能表示为2^k的数
例如int(log2(137))就能返回7,而2^7=128,恰为离137最近的能表示为2^k的数
*/
if (flag) cout << "+"; //开头不输出加号
if (t == 1) cout << "2"; //如果这一项是1,输出2,不递归
else if (t == 0) cout << "2(0)"; //如果这一项是0,输出2(0),不递归
else
{
cout << "2(";
divide(t); //递归一层,把括号里的数分解输出
cout << ")";
}
x -= pow(2,t); //继续处理下一项
flag = true;
}
}
#####3.根本不需要解释的主程序
int main()
{
int n;
cin >> n;
divide(n);
return 0;
}
#####完结撒花=-=