数论小技巧

数论中的一些小技巧

  • 模数大于int范围时,乘法要用快速乘,不然会爆出long long 范围
  • exgcd中temp的使用和a/b*y的计算顺序
void exgcd(int a,int b)
{
	if(b==0)
	{
		x=1;y=0;
		return;
	}
	exgcd(b,a%b);
	int temp=x;//temp使用 
	x=y;y=temp-a/b*y;//a/b*y的计算顺序 
	return;
}
  • exgcd中求 a x + b y = n ∗ g c d ( a , b ) ax+by=n*gcd(a,b) ax+by=ngcd(a,b) 时可求 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b) 得到 x 0 = ( x % m o d + m o d ) % m o d x_0=(x\%mod+mod)\%mod x0=(x%mod+mod)%mod,然后 a n s = x 0 ∗ n ans=x_0*n ans=x0n
	n=d/gcd(a,b);
	exgcd(a,b);
	x=(x%mod+mod)%mod;
	x=x*n;
  • exgcd中 a x + b y = n ax+by=n ax+by=n 其中x,n符合确定,而y符合可以任意取。
  • 用Lucas定理求模意义下的组合数 C n m C_n^m Cnm时,需要以下特判:
    1. 当m=0或者m=n时返回1
    2. 当m>n时返回0
  • 组合数大于模数时,预处理阶乘会挂,所以必须使用Lucas定理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

snowy2002

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值