CLIP模型

什么是CLIP

Contrastive Language-Image Pre-Training—CLIP
利用文本的监督信号训练一个迁移能力强的视觉模型
在这里插入图片描述

  • 这个模型有什么用呢?想象我们有一个图像分类的任务
  • 训练1000个类别,预测一张图片是这1000个类别中的哪一类
  • 现在如果加入50个新的类别的图像,试想会发生什么呢?
  • 传统的图像分类模型无法对类别进行拓展,想要保证准确率只能从头开始训练,费时费力。
  • CLIP模型就可以用来解决这种问题,预训练后的模型就可以直接进行zero-shot

与前人工作对比:

  • CLIP论文指出,17年就已经开始有这些方法了,但是没获得太多关注。
  • 17年类似方法在ImageNet上的效果只要17%。
  • 然后openAI说:不是方法不行,而是资源不到位(暴力出奇迹)
  • 一个648解决不了,那就再来十次648.。。。

CLIP的成果:

  • CLIP在完全不使用ImageNet中所有训练数据的前提下
  • 直接Zero-shot得到的结果与ResNet在128W ImageNet数据训练效果一致
  • CLIP使用4亿个配对的数据和文本来进行训练,不标注直接爬取(没有解决transformer训练所需数据量大的缺点)
监督训练和zero-sho
### 关于CLIP模型的研究论文 CLIP(Contrastive Language–Image Pre-training)是由OpenAI开发的一种多模态模型,旨在通过对比学习的方式联合训练文本和图像表示[^1]。该模型的核心目标是通过对大量互联网图片及其描述的学习,使得模型能够在无需额外微调的情况下完成多种下游任务。 #### CLIP模型的主要组成部分 CLIP模型由两部分组成:编码器和对比损失函数。其中,编码器分为两个分支——用于处理文本的Transformer架构以及用于处理图像的ResNet或Vision Transformer (ViT)[^2]。这两个分支分别将输入的文本和图像映射到同一高维空间中的向量表示。随后,通过计算这些向量之间的相似度并优化对比损失函数,使模型学会关联匹配的图文对,并排斥不匹配的组合[^3]。 #### 论文获取方式 CLIP模型的相关研究可以参考OpenAI发布的原始论文《Learning Transferable Visual Models From Natural Language Supervision》。这篇论文详细介绍了CLIP的设计理念、训练过程及其实验效果。此外,在引用[2]中提到的内容也提供了有关CLIP背景知识的理解路径,适合初学者作为入门资料阅读。 以下是实现CLIP的一个简单Python代码示例: ```python import clip import torch device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("RN50", device=device) image = preprocess(Image.open("example_image.jpg")).unsqueeze(0).to(device) text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device) with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) logits_per_image, logits_per_text = model(image, text) probs = logits_per_image.softmax(dim=-1).cpu().numpy() ``` 此段代码展示了如何加载预训练好的CLIP模型并对给定的一张图片与多个标签进行匹配打分的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

snowy2002

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值