什么是CLIP
Contrastive Language-Image Pre-Training—CLIP
利用文本的监督信号训练一个迁移能力强的视觉模型
- 这个模型有什么用呢?想象我们有一个图像分类的任务
- 训练1000个类别,预测一张图片是这1000个类别中的哪一类
- 现在如果加入50个新的类别的图像,试想会发生什么呢?
- 传统的图像分类模型无法对类别进行拓展,想要保证准确率只能从头开始训练,费时费力。
- CLIP模型就可以用来解决这种问题,预训练后的模型就可以直接进行zero-shot
与前人工作对比:
- CLIP论文指出,17年就已经开始有这些方法了,但是没获得太多关注。
- 17年类似方法在ImageNet上的效果只要17%。
- 然后openAI说:不是方法不行,而是资源不到位(暴力出奇迹)
- 一个648解决不了,那就再来十次648.。。。
CLIP的成果:
- CLIP在完全不使用ImageNet中所有训练数据的前提下
- 直接Zero-shot得到的结果与ResNet在128W ImageNet数据训练效果一致
- CLIP使用4亿个配对的数据和文本来进行训练,不标注直接爬取(没有解决transformer训练所需数据量大的缺点)