【YOLO】基于旋转矩形边界框的目标检测方法综述

旋转目标检测旨在精确定位图像中任意方向的目标,输出带角度的矩形框(旋转框),广泛应用于遥感、自动驾驶、文档分析等领域。以下从方法分类、技术演进、核心挑战与解决方案等方面展开详解。


一、方法分类与技术演进
1. ​传统方法(2010年代初期)​
  • 手工特征+几何建模​:
    使用HOG、SIFT等特征提取目标边缘和纹理,结合滑动窗口和几何变换(如旋转模板匹配)。
    • 局限性​:计算效率低,难以处理复杂背景和多尺度目标。
2. ​深度学习早期方法(2016-2018)​
  • 旋转锚框法(RRPN)​​:
    • 在Faster R-CNN基础上引入旋转锚框,生成多角度候选区域(如0°、30°、60°)。
    • 缺点​:锚框数量爆炸,计算开销大,角度回归存在边界跳变问题。
  • 旋转ROI对齐(RROI Align)​
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值