旋转目标检测旨在精确定位图像中任意方向的目标,输出带角度的矩形框(旋转框),广泛应用于遥感、自动驾驶、文档分析等领域。以下从方法分类、技术演进、核心挑战与解决方案等方面展开详解。
一、方法分类与技术演进
1. 传统方法(2010年代初期)
- 手工特征+几何建模:
使用HOG、SIFT等特征提取目标边缘和纹理,结合滑动窗口和几何变换(如旋转模板匹配)。- 局限性:计算效率低,难以处理复杂背景和多尺度目标。
2. 深度学习早期方法(2016-2018)
- 旋转锚框法(RRPN):
- 在Faster R-CNN基础上引入旋转锚框,生成多角度候选区域(如0°、30°、60°)。
- 缺点:锚框数量爆炸,计算开销大,角度回归存在边界跳变问题。
- 旋转ROI对齐(RROI Align)