[数学]Lucas定理

Lucas定理解决的一类问题是C(n,m) % p,其中n和m很大的情况


显然如果n和m在1e7的范围内,我们可以很轻松的预处理o(p)+o(1) 得到C(n,m) % p

那么n和m很大的时候就可以靠Lucas定理了


Lucas定理:C(n,m) % p = C(n%p, m%p) * C(n/p , m/p) % p

这样就可以把n,m很大的情况化简成log(min(n,m))个可以o(1)处理的数之积了


证明

思考一下发现Lucas定理将n和m化为两个p进制的数,然后对每一位单独取组合数相乘

下面的证明就非常清晰了:


实战:hdu 3037

http://acm.hdu.edu.cn/showproblem.php?pid=3037

很直白的题目,求C(n+m,m) % p,直接上Lucas定理就可以,注意这里求逆元有两种方法,其效率差不多,可以看情况使用

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <cmath>
using namespace std;

const int N = 100000+20;
typedef long long LL;
LL MOD;
LL fac[N],invfac[N];

LL fpow(LL n,LL k,LL MOD){
    LL ans = 1,base = n;
    while(k){
        if(k & 1)ans = ans * base % MOD;
        base = base * base % MOD;
        k >>= 1;
    }
    return ans;
}
int inv(int a) {
    //return fpow(a, MOD-2, MOD);
	return a == 1 ? 1 : (long long)(MOD - MOD / a) * inv(MOD % a) % MOD;
}
LL C(LL n,LL m)
{
    if(m < 0)return 0;
    if(n < m)return 0;
    return fac[n] * inv(fac[m]*fac[n-m] % MOD) % MOD;
}
LL n,m;
LL lucas(LL n,LL m,LL p)
{
    LL ret = 1;
    while(n && m){
        LL a = n % p,b = m % p;
        if(a < b)return 0;
        ret = ret * C(a,b) % p;
        n /= p;
        m /= p;
    }
    return ret;
}
void solve()
{
    printf("%I64d\n",lucas(n+m, m, MOD));
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%I64d%I64d%I64d",&n,&m,&MOD);
        fac[0] = 1;
        for(int i = 1 ; i < MOD ; i ++)fac[i] = fac[i-1] * i % MOD;
        solve();
    }
    return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值