Lucas定理解决的一类问题是C(n,m) % p,其中n和m很大的情况
显然如果n和m在1e7的范围内,我们可以很轻松的预处理o(p)+o(1) 得到C(n,m) % p
那么n和m很大的时候就可以靠Lucas定理了
Lucas定理:C(n,m) % p = C(n%p, m%p) * C(n/p , m/p) % p
这样就可以把n,m很大的情况化简成log(min(n,m))个可以o(1)处理的数之积了
证明:
思考一下发现Lucas定理将n和m化为两个p进制的数,然后对每一位单独取组合数相乘
下面的证明就非常清晰了:
实战:hdu 3037
http://acm.hdu.edu.cn/showproblem.php?pid=3037
很直白的题目,求C(n+m,m) % p,直接上Lucas定理就可以,注意这里求逆元有两种方法,其效率差不多,可以看情况使用
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <cmath>
using namespace std;
const int N = 100000+20;
typedef long long LL;
LL MOD;
LL fac[N],invfac[N];
LL fpow(LL n,LL k,LL MOD){
LL ans = 1,base = n;
while(k){
if(k & 1)ans = ans * base % MOD;
base = base * base % MOD;
k >>= 1;
}
return ans;
}
int inv(int a) {
//return fpow(a, MOD-2, MOD);
return a == 1 ? 1 : (long long)(MOD - MOD / a) * inv(MOD % a) % MOD;
}
LL C(LL n,LL m)
{
if(m < 0)return 0;
if(n < m)return 0;
return fac[n] * inv(fac[m]*fac[n-m] % MOD) % MOD;
}
LL n,m;
LL lucas(LL n,LL m,LL p)
{
LL ret = 1;
while(n && m){
LL a = n % p,b = m % p;
if(a < b)return 0;
ret = ret * C(a,b) % p;
n /= p;
m /= p;
}
return ret;
}
void solve()
{
printf("%I64d\n",lucas(n+m, m, MOD));
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
scanf("%I64d%I64d%I64d",&n,&m,&MOD);
fac[0] = 1;
for(int i = 1 ; i < MOD ; i ++)fac[i] = fac[i-1] * i % MOD;
solve();
}
return 0;
}