模型大师们,准备好踏上一段深度学习与模型构建的路了吗?
这里有八本经典之作,它们将是你攀登知识高峰的阶梯
从《PyTorch深度学习实战》到《大模型时代》
从掌握基础框架到洞悉大模型时代的变革
模型大师,准备好了吗?翻烂这八本书,直接嘎嘎冲!
第一本:
《从零开始大模型开发与微调》
《从零开始大模型开发与微调》是一本由王晓华所著,清华大学出版社出版的书籍。本书系统介绍了基于PyTorch 2.0和ChatGLM的大模型开发与微调技术。内容涵盖大模型的基本理论、算法、程序实现、应用实战及微调技术,旨在为读者揭示大模型开发的全貌。 书中通过丰富的示例和实战案例,展示了如何构建、训练、评估及微调大模型,适合PyTorch深度学习初学者、大型开发初学者及开发人员学习。
第二本:
《大规模语言模型》
《大规模语言模型》是一本由张奇教授等撰写的专业书籍。该书首先介绍了LLM的基本概念发展历程以及构建流程,涵盖了从预训练、有监督微调、奖励建模到强化学习的四个阶段。书中详细讨论了每个阶段所使用的算法、数据来源面临的难题及实践经验,并提供了大量的工程实践方法和示例代码。 该书不仅适合自然语言处理和深度学习领域的研究者和工程师,也适合对大规模语言模型感兴趣的读者作为入门指南。
这八本大模型书籍已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
PDF书籍: 完整版本链接获取
第三本:
《大规模应用开发极简入门》
《大规模应用开发极简入门》是一本专注于大规模应用开发的入门指南。详细讲解了如何将这类模型集成到基于Python的自然语言处理应用程序中。书中不仅涵盖了文本生成、内容摘要等初级应用程序的开发,还深入探讨了提示工程模型微调等进阶主题。 通过丰富的案例和实战演练,本书旨在帮助读者快速上手大规模应用开发,为进入大模型时代提供有力的技术支持。
第四本:
《一本书读懂AIGC》
《一本书读懂AIGC》是一本由a15a等人撰写的科普书籍,由电子工业出版社出版。本书系统介绍了AIGC(人工智能生成内容)的基础知识、技术原理和应用实践,涵盖了AIGC在文本、声音图片、视频等领域的发展和应用。 通过大量案例和实例,该书详细阐述了AIGC的应用场景和价值,并探讨了AIGC对人类文明发展产生的深远影响。全书共252页,以通俗易懂的方式为读者揭示了AIGC的奥秘,是了解AIGC的入门佳作。
第五本:
《GPT图解》
《G_T图解》该书深入浅出地介绍了G_T模型的发展历程、核心原理及应用前景。全书分为多个章节,涵盖了从N-Gram、词袋模型到Word2Vec、神经概率语言模型等自然语言处理技术的演进,并详细介绍了循环神经网络(RNN)、Seq2Seq、注意力机制和Transformer等关键技术。 全书内容丰富,图文并茂,旨在为读者提供一份全面而深入的G*T技术指南。
第六本:
《Langchain入门指南》
《LangChain入门指南》全书内容清晰,分为多个部分进行详细介绍。书籍概述了LLM技术的发展背景以及LangChain框架的设计理念,为读者提供了必要的前置知识。随后,书籍深入介绍了LangChain的六大模块,包括模型I/0、数据增强、链、记忆等,并通过大量代码示例让读者了解每个模块的原理和用法。
第七本:
《pytorch深度学习实战》
《PyTorch深度学习实战》介绍了PyTorch的核心概念和特性,如动态图、自动微分等,让读者快速掌握PyTorch的基础知识。接着,书籍详细讲解了深度学习的关键实践,包括使用PyTorch张量AP1、Python加载数据、监控训练以及结果可视化等,帮助读者深入理解深度学习的整个流程。 书中还包含了真实、完整的案例项目,如肿瘤图像分类器的构建,旨在通过实践提升读者的动手能力。
第八本:
《大模型时代》
《大模型时代》深入探讨了大模型时代的技术、应用和产业变化。作者通过拟人化的形式生动解释了ChatG*T大模型背后的原理,并对其基础能力进行深度剖析。书籍参照三次工业革命的历史和逻辑,描绘了大模型如何驱动社会进入智能革命和脑机协作时代,并为个人和企业应对变革提出建议。 书中还介绍了大模型在多个领域的应用并对国内外大模型产业的构成和发展进行了分析。
这八本大模型书籍已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
PDF书籍: 完整版本链接获取
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。