在我们的生活中,惊喜无处不在。它可能是生日派对上朋友们突然的欢呼,让你瞬间热泪盈眶;也可能是体育赛事中意想不到的逆转,让全场观众瞬间沸腾;又或许是电影里一个出人意料的剧情反转,让你的心跳加速、呼吸急促。这些瞬间虽然短暂,却能深刻地触动我们的情感,甚至改变我们的认知。但你有没有想过,这些看似不同的“惊喜”时刻,是否在我们的大脑中引发了相似的反应?当现实与我们的预期发生冲突时,大脑是如何感知并处理这种“意外”的?这种对“惊喜”的探索,其实早已成为科学家们的研究焦点。心理学家们认为,惊喜是一种基本的心理体验,它反映了我们对世界的预测与实际结果之间的差异。当这种差异越大时,我们感受到的惊喜也就越强烈。然而,尽管“惊喜”在日常生活中无处不在,但科学家们一直未能完全解开它背后的神经机制。一个核心问题是:惊喜是否只是一种简单的情感反应,还是它背后有着更深层次的神经基础?换句话说,大脑是否有一种通用的机制来处理这些意外事件,无论它们发生在实验室的任务中,还是在真实世界的复杂情境里?
2024年12月23日Ziwei Zhang教授和Monica D. Rosenberg博士在Nature Human Behaviour(IF=21.4)上发表了题为“Brain network dynamics predict moments of surprise across contexts”的文章。该研究揭示了一个能够预测“惊喜”时刻的大脑网络模型——惊喜边缘波动基础预测模型(EFPM)。这一模型不仅在实验室的适应性学习任务中表现出色,还能在观看体育比赛和视频等自然情境中成功预测惊喜的发生。这一表现表明,大脑在处理“惊喜”时可能存在着一种跨情境的通用神经机制,而这种机制或许能够帮助我们更好地理解人类的认知和情感反应。
惊喜是一种关键的人类情感,通常在我们目睹或经历的事情与我们的预期不符时产生。这种对意外事件的自然人类反应一直是众多心理学研究的重点,这些研究揭示了其背后的一些神经过程。
该研究的研究人员开发了一个大脑网络模型,能够预测人们的惊喜时刻。他们展示了该模型能够很好地泛化到各种任务中,预测那些正在执行任务或观看包含意外元素的不同视频的个体的惊喜反应。这项研究是在以往关注惊喜的研究基础上进行的。早期的研究发现,当现实与人类的预期在许多不同情境中发生冲突时,人们会感受到惊喜。其中一些研究发现了与每种特定惊喜体验相关的大脑活动模式。
研究人员说:“论文的第一个目标是看看我们是否可以利用大脑作为一个共同的空间来理解我们的体验。如果我的大脑在我学习任务时因惊喜而显示出与你观看篮球比赛时因惊喜而显示出的相似模式,这告诉我们这些非常不同的体验有共同之处,大脑对这些预期违背的反应是相似的。”
在回顾了以往探索人类大脑如何响应意外事件的研究之后,研究人员着手确定这些大脑反应是否可以用来预测个体在不同情境中何时会感到惊喜。本质上,他们的目标是通过检查大脑活动来准确猜测人们在某一时刻是否会感到惊喜。
该研究使用了其他研究小组收集和共享的三个功能磁共振成像 (fMRI) 数据集,在 Joseph McGuire 博士及同事共享的一个数据集中,志愿者在 MRI 扫描仪中执行了一项学习任务。他们的目标是了解装有硬币的卡通袋在计算机屏幕上的显示位置。他们越了解这项任务,他们在游戏中可以'捕获'的硬币就越多。在 McGuire 博士和他的同事之前的这项工作中,发现参与者学会了预测袋子在计算机屏幕上的出现位置。然而,在某些情况下,袋子会出现在意想不到的位置,研究人员假设在这些情况下人们会感到惊讶。
研究的第二个数据集是由 James Antony 博士及其同事收集和共享的,在这项研究中,志愿者在进行功能性磁共振成像(fMRI)扫描时观看了篮球比赛视频。当人们对比赛结果的预期——即哪支队伍可能会赢——发生变化时,惊喜程度会更高,这种预期的变化受到比分和球队实力的影响。
此外,Shari Liu博士及其同事们收集并分享了人们在观看卡通视频时的大脑功能性磁共振成像(fMRI)数据。在这些卡通视频中,角色或多或少地做出了令人惊讶的动作。这些令人惊讶的行为包括角色改变目标(例如,朝着一个不可预测的方向前进)或行为低效(例如,在绕过障碍时做出夸张的动作)。为了预测参与这三项不同研究的受试者的惊喜反应,该研究的研究人员创建了一个新的大脑网络模型,称为惊喜边缘波动基础预测模型(EFPM)。该模型旨在通过追踪大脑不同区域之间的相互作用波动来预测人们何时会感到惊喜。
研究中使用留一法交叉验证(LOOCV)识别与惊喜相关的大脑区域间的动态连接。通过线性混合效应模型验证模型在不同数据集中的泛化能力。进行计算性损伤分析(computational lesioning)以评估模型对特定脑网络的依赖性。惊喜EFPM能够成功预测适应性学习任务中的惊喜,并且在篮球比赛观看和违反预期的视频中也表现出良好的泛化能力。在篮球比赛数据中,模型预测的惊喜与实际的“信念不一致惊喜”显著相关(p=0.047)。在违反心理预期的视频中,模型能够区分预期和非预期事件(p=0.036)。高惊喜网络主要涉及内侧前额叶(Medial Frontal Lobe)、前顶叶(Frontoparietal Lobe)和默认模式网络(DMN)。低惊喜网络主要涉及视觉和运动网络。这些网络的动态变化在不同情境下表现出一致性,表明它们可能支持与惊喜相关的高级认知过程。研究通过模型比较得出结论,惊喜EFPM优于其他基于脑网络、BOLD激活或行为指标的模型,能够更好地捕捉跨情境的惊喜信号。
图1 高惊喜网络(High surprise network)和低惊喜网络(Low surprise network)的边缘相关性
图1左侧显示了与惊喜正相关的边缘的偏Spearman相关系数(partial Spearman rho)。图中的绿色线表示真实数据的平均值(mean=0.09),而灰色线表示随机数据(null)的平均值(mean=0.0)。这表明与惊喜正相关的边缘在高惊喜网络中具有较高的相关性。图1右侧显示了与惊喜负相关的边缘的偏Spearman相关系数。图中的紫色线表示真实数据的平均值(mean=0.2),而灰色线同样表示随机数据的平均值(mean=-0.1)。这表明与惊喜负相关的边缘在低惊喜网络中具有较高的相关性。每个网络的下方都展示了大脑图,其中绿色点表示高惊喜网络中包含的大脑区域,紫色点表示低惊喜网络中包含的大脑区域。
图2 高惊喜网络和低惊喜网络中包含的大脑区域的百分比
研究人员说:“如果我们把大脑想象成一个不同区域相互作用的系统,那么我们已经在用网络的视角看待大脑了。在这篇论文中,我们构建了一个模型,可以根据一个人当时的大脑网络配置来预测他们有多惊讶。“
在开发模型的第一步中,研究人员识别了在McGuire 博士及其同事采用的学习任务中预测惊喜的大脑相互作用。随后,他们尝试确定这些相同的大脑相互作用的强度是否可以用来预测他们研究的另外两项工作中参与者的惊喜,这两项工作分别要求人们观看篮球比赛和卡通视频。
研究构建的大脑模型能够预测一个新的人在执行相同任务(即学习任务)时的惊喜,以及另一组完全从事不同活动(即观看篮球比赛)的人的惊喜。即研究的模型可以查看一个完全从事不同活动的新个体的数据,并在一定程度上准确地猜测他们有多惊讶。研究表明,无论人们在做什么或处于何种情境,大脑的某些部分都会对预期的违背做出反应。利用他们的模型,他们能够仅使用神经影像学数据来预测个体感受到的惊喜。尽管预测并非完美无缺,但其准确性远高于研究人员仅凭偶然得出的结果。
图3 高惊喜网络(左侧,绿色)和低惊喜网络(右侧,紫色)中边缘的解剖结构以及不同大脑网络中预测高惊喜和低惊喜的边缘的百分比
“我们认为这个模型的意义远不止于惊喜。”研究人员称,“我们开发的方法可以作为一个框架,用来预测其他体验,比如一个人的注意力集中程度,或者他们感到有多快乐。“
图4 惊喜边缘波动基础预测模型(EFPM)在适应性学习任务中的表现及其在自然观看情境中的泛化能力
图4展示了在适应性学习任务中定义的惊喜边缘波动基础预测模型(EFPM)在自然观看情境中的泛化能力,以及不同大脑网络对惊喜的预测能力。结果表明,在适应性学习任务中定义的惊喜EFPM能够泛化到自然观看情境中,说明该模型能够跨情境预测惊喜体验。不同的大脑网络对惊喜的预测能力不同。图中颜色的变化显示了不同网络中边缘时间序列与惊喜的相关性。在两个数据集中,预测惊喜的网络和网络对并不相同,即图中钻石形两侧没有显著的网络重叠。图中还展示了在任务和视频数据集中,哪些网络对惊喜的预测具有显著性(即颜色最深的区域)。
这项最新研究可能会很快激发旨在从记录的大脑活动中预测人类情感的新研究。由于他们的分析依赖于其他研究团队编译的数据集,所以Ziwei Zhang教授和Monica D. Rosenberg博士认为这也强调了开放科学的好处,以及将数据或代码提供给他人的价值。
在接下来的研究中,研究人员计划评估他们的模型在更广泛的情境中预测惊喜的能力。例如,他们希望探索该模型在个体聆听故事、音乐作品,甚至在社交场合中与他人互动时的预测能力。
研究者所提出的模型能够识别出不同个体和不同情境下惊喜所共有的神经特征。换句话说,尽管情境和个体可能不同,但大脑对惊喜的反应有一些共同的模式,而他们的模型能够捕捉到这些模式。除了模型的泛化能力,研究还对另一个研究方向感兴趣。这个方向关注的是:为什么人们会在不同的时间感到惊喜,以及这种惊喜如何影响他们的记忆和学习。例如,当人们聆听故事时,每个人对故事中意外情节的反应(即惊喜)可能不同。这种差异可能会影响他们对故事内容的记忆。一个人在听到故事时的惊喜程度可能决定了他/她对故事的某些部分记得更清楚,而另一些部分则可能被遗忘。理解预期违背的“共享”和“独特”方面都很重要。共享方面指的是不同情境和个体中普遍存在的神经反应模式。这些模式帮助我们理解大脑如何普遍地处理惊喜。独特方面指的是个体之间或情境之间的差异。这些差异可能解释为什么不同的人对相同的事件有不同的反应,以及为什么某些人对某些事件的记忆更深刻。
研究结果表明,尽管情境不同,大脑对意外事件的反应具有共同的神经基础。这种基础可能涉及广泛的脑网络,而不仅仅是特定的脑区。惊喜EFPM能够跨任务和自然情境预测惊喜,为研究大脑如何处理预期违背提供了新的视角。研究者建议进一步探索惊喜与其他认知过程(如注意力)的相互作用,并在更多情境中验证模型的适用性。
参考文献:
Zhang Z, Rosenberg MD. Brain network dynamics predict moments of surprise across contexts. Nat Hum Behav. 2024 Dec 23. doi: 10.1038/s41562-024-02017-0. Epub ahead of print. PMID: 39715875.
资讯来源:
https://medicalxpress.com/news/2025-01-brain-network-people.html