大脑功能与结构的解耦揭示了人类大脑的区域行为专门化

简要总结

该文章介绍了一种新的方法来量化大脑功能活动与结构连接组之间的耦合程度,即结构解耦指数。研究利用图信号处理和图傅里叶变换(GFT)分析了大脑活动数据,发现大脑活动倾向于通过与结构连接组耦合良好的低频谐波分量来表达。文章还提出了一种替代数据分析方法,通过生成替代功能信号来评估结构解耦指数的统计显著性,并发现该指数与大脑功能的空间分布一致,揭示了大脑功能活动的区域性特征。这项研究为理解大脑功能与结构连接之间的关系提供了新的见解,并为未来的神经科学研究提供了新的方法和途径。

摘要

大脑是由神经元群体组成的网络,这些群体通过结构化的通路相互连接。大脑活动在这些结构化的底物上得以表达,同时也受到其限制。因此,直接相连区域的功能信号之间的统计依赖性可能更高。然而,大脑功能在多大程度上受到其底层连接图谱的限制,仍然是一个复杂的问题,目前仅部分得到了解答。在这里,研究人员引入了“结构解耦指数”,用以量化结构与功能之间的耦合强度,并揭示了一个宏观尺度的梯度:从与结构耦合更强的大脑区域,到比预期解耦合更强的大脑区域。这一梯度涵盖了从低级感觉功能到高级认知功能的行为领域,并首次表明结构-功能耦合的强度在空间上是变化的,这与其他模态(如功能连接、基因表达、微观结构属性和时间层次)的证据一致。

1. 引言

大脑活动受到其表现所在的解剖底物的限制,但功能活动如何被其底层的结构连接(SC)所塑造,仍然是神经科学中的一个核心问题。弥散加权成像和功能磁共振成像(fMRI)等全脑成像技术使得我们能够获得系统级别的结构连接(SC)测量,揭示白质纤维通路,以及功能连接(FC),后者反映了激活时间序列的统计依赖性。

为了关联这些测量方法,已经提出了几种方法。首先,结构连接(SC)和功能连接(FC)之间的关系最常通过简单直接的相关性分析来研究。其次,动态因果建模(Dynamic Causal Modeling, DCM)中的有效连接探索了如何通过神经生物学上合理的模型,以兴奋性和抑制性相互作用来解释功能信号,甚至可能结合结构连接(SC)的先验知识。第三,图论建模激发了一系列研究,这些研究总结了结构连接(SC)或功能连接(FC)的组织原则,允许提取系统级别的网络属性,包括架构、进化、发展以及疾病或障碍引起的改变。最后,为了探究结构连接(SC)对功能连接(FC)的因果影响,提出了从结构连接体出发,结合局部动态的区域神经模型来模拟功能活动。网络可控性概念也研究了如何通过结构连接体驱动特定的经验性空间活动模式。最近,图谐波分析被用于探索大脑的结构网络,这是一种强大的方法,与拉普拉斯嵌入和谱聚类等基本概念相关。本质上,所有局部连接的产物被总结为图的节点上的空间模式——图谐波分量,这些分量揭示了全局网络的组织结构。这些分量被证明与功能静息态网络相似。下一步是将功能信号分解为这些结构化的分量,为研究结构与功能之间的关系开辟了新的途径。

研究提出了一种新的指标——结构解耦指数,用于量化功能信号与结构连接之间的耦合强度。通过定义一个过滤操作来研究全脑的耦合强度,该操作将大脑活动在每一个时间点分解为两部分,平均能量相等:一部分与结构弱耦合,另一部分与结构强耦合。它们的能量比值导致了结构解耦指数,该指数可以针对每个大脑区域进行确定。其次,研究部署了一种新的非参数检验,以评估结构解耦指数的显著性,基于一个强大的零模型,该模型保持了功能活动与结构连接体之间相互作用的选定属性。

使用人类连接组计划(HCP)的数据,研究发现感觉区域(如视觉、听觉和体感运动区域)的活动与结构连接耦合更强,而高级认知区域(如顶叶、颞叶、眶额叶)的活动与结构连接耦合更弱。这表明大脑的宏观组织结构在功能与结构的耦合程度上存在梯度:低级感觉功能区域与结构耦合更强,而高级认知功能区域与结构耦合更弱。

通过文献元分析,研究发现基于结构-功能关系对大脑区域进行表征,可以揭示皮层的宏观组织结构。低级功能(如感觉、运动)的区域与结构耦合更强,而高级功能(如记忆、奖励、情感)的区域与结构耦合更弱。这些发现在测试-重测分析中显示出高度的可靠性,表明这种结构解耦指数是一个有意义的指标。

2. 数据与方法

研究包括了来自HCP(db.humanconnectome.org)的56名健康志愿者。所有实验都经过了当地机构伦理委员会(瑞士涉及人类的研究伦理委员会)的审查和批准。为所有受试者(在HCP内)收集了知情同意书,包括同意共享去标识化的数据,并得到了华盛顿大学机构审查委员会的批准。所有方法都按照相关指南和法规进行。使用了以下序列:

(1)结构性磁共振成像(MRI):3D MPRAGE T1加权,重复时间(TR)=2400毫秒,回波时间(TE)=2.14毫秒,反转时间(TI)=1000毫秒,翻转角度=8°,视野(FOV)=224×224,体素大小=0.7毫米各向同性。

(2)扩散加权MRI:自旋回波平面回波(EPI),TR=5520毫秒,TE=89.5毫秒,翻转角度=78°,FOV=208×180,3个b值=1000、2000、3000 s/mm²的壳层,带有90个方向加上6个b=0采集。

(3)两组15分钟的静息态功能磁共振成像(fMRI):梯度回波EPI,TR=720毫秒,TE=33.1毫秒,翻转角度=52°,FOV=208×180,体素大小=2毫米各向同性。在单独的分析中还包括了额外的两组静息态fMRI会话(相同的采集参数),以测试可靠性。由于采集不完整,56名受试者中有2名需要从这第二组静息态数据集中排除。所有采集都使用了HCP最小预处理图像。

SC(Structuralconnectome)结构连接组:扩散加权扫描用MRtrix3(http://www.mrtrix.org/)进行了以下操作:估计多层多组织响应函数、约束球面反卷积、生成具有107条输出流线的纤维束图。Glasser的多模态皮层图谱被转换为体积,并被分割为两个半球(左侧的前180个区域和右侧的后180个区域),用于将皮层分割为N= 360个感兴趣区域,并生成结构连接组。所选择的连接度量是连接两个区域的纤维数量除以区域体积(连接区域之和)。通过对所有受试者的结构矩阵求平均值,得到组连接体Aunnorm。对称归一化导致邻接矩阵A=D-1/2AunnormD-1/2,其中D是度矩阵。

静息态功能数据:通过SPM8使用各向同性的高斯核(5毫米全宽半高)进行了空间平滑处理。去除前10个时间点,以便fMRI信号达到稳态磁化,结果得到T= 1190个时间点。从T1图像中分割出个体组织图(白质、灰质、脑脊液)。体素fMRI时间序列被去趋势化,并且回归协变量(6个头动参数、平均脑脊液和白质信号)。然后,预处理后的体素时间序列被带通滤波(0.01-0.15Hz)以提高典型静息态波动的信噪比。最后,用于结构连接组的Glasser多模态分割(与fMRI分辨率相同)被用于分割fMRI volum并计算区域平均fMRI信号。这些信号被z分数标准化并存储在NxT的矩阵S中。功能连接(FC)通过计算时间序列的皮尔逊相关系数,并在受试者之间进行平均得到。功能连接组的节点强度被评估为每个连接的绝对相关值之和。

结构连接组谐波:文章通过图拉普拉斯算子 L 的特征分解定义了图傅里叶变换(GFT),即 LU= UΛ,其中 U 是特征向量矩阵,Λ 是特征值对角矩阵。特征值 [ Λ]k,k =λk 可以被解释为频率,而特征模式 uk 作为频率分量,被称为结构连接组谐波。因此,具有低 λk 的 uk 编码低频,从而相对于结构网络编码平滑信号。这假设所有对能量密度的贡献都是相关的信号。

零模型生成:研究人员使用谱随机化生成了两种类型的替代功能信号,s(rand1) 和 s(rand2),分别忽略或包含关于结构连接组(SC)的知识。这种方法包括在重建替代功能信号时对图谱系数的符号随机化,即谐波权重。对于前一种情况,研究人员使用配置模型生成一个图 A’,保留 A 的相同度数,并使用其谐波 U’进行替代信号重建。

结构解耦指数(Structural-decoupling index):结构解耦指数(Structural-decoupling index)是一种新的指标,它通过图信号处理提供了对结构和功能之间相互作用的全面和细致的理解。该指数通过图谱滤波将功能信号分解为两部分:一部分与结构耦合良好(即由图的低频特征模式表示),另一部分与结构耦合较少(即由高频特征模式表示)。这一过程是通过图傅里叶变换(GFT)和理想低通/高通滤波器实现的。由于难以选择截止频率,研究者建议基于平均能量谱密度(跨时间和受试者)将频谱分为两部分,每部分具有相等的能量(中值分割)。

结构解耦指数的meta分析:一项类似于Margulies等人实施的NeuroSynth meta分析被进行,以评估与结构解耦指数相关的主题。在这项研究中,通过将结构解耦指数值分为五个百分位增量来获得二进制掩模,这些掩模用作meta分析的输入,并将其作为基于Margulies等人采用的相同24个主题的meta分析的输入。根据生成的z统计量的加权平均值对术语进行排序,以便进行可视化。

文章中使用的方法得益于图信号处理的新兴框架,该框架在图环境中重新审视了经典的信号处理操作。对于其在人类脑成像中的应用,结构连接组通过标准化的图邻接矩阵A给出,而时间依赖的图信号则取自功能数据;即,激活水平与图的节点相关联。图拉普拉斯算子L(即I - (1/4)A)的特征分解提供了谐波分量,从而可以构建图傅里叶变换(GFT)。特别地,图信号可以表示为这些分量的加权线性组合,并且可以引入有意义的操作(例如,图滤波和随机化)。

3. 结果

结构连接组的谐波分量。结构连接组可以被建模为一个图,通过该图的拉普拉斯矩阵的特征分解可以计算出谐波分量。谐波分量,是与节点相关联的图信号——这些信号在图上最大程度地保持距离。因此,它们提供了一种自然的频谱表示方法,用于表示任何图信号的复杂性递增,这与频率的概念相对应。通过计算谐波分量来揭示不同频率下的大脑活动模式。低频模式反映了大脑的全局和缓慢变化,而高频模式则揭示了更复杂和局部化的活动。结构连接组的结构连接组的谐波分量图如图1所示。

图1 结构连接组的谐波分量图:结构连接组的特征分解导致具有递增空间频率k的谐波分量。

大脑活动与结构连接组相耦合静息态活动随后被投影到结构连接组的谐波分量上;即,对于每个时间点,激活的空间模式被表示为谐波分量的加权线性组合。时间平均平方权重形成了静息态活动的能量谱密度。每个时间点t的大脑活动被写成谐波的线性组合(使用系数^st)。 使用活动能量谱密度ξ的中值分裂标准来分割频谱,并将大脑活动分解为耦合/解耦合部分stC和stD(分别使用低频/高频谐波;λ=谐波频率),如图2所示:

图2 大脑活动分解图

基于结构的大脑活动零模型。零模型是一种统计方法,用于在缺乏特定活动机制的情况下,通过随机化或从已知或指定的分布中随机抽样来生成数据,同时保留数据的某些元素不变。这种方法可以用于测试大脑活动与结构连接组(structural connectome)之间的关系。文中提到的零模型生成方法中,使用了谱随机化(spectral randomization)技术来生成两种类型的替代功能数据,这些数据要么包含、要么不包含大脑结构连接组(SC)的信息。具体来说:

(1) SC-ignorant surrogates:在这种情况下,模型不包含关于经验性结构连接组(empirical SC)的信息,因为功能信号被投影到一个人工生成的图的谐波(harmonics)上,该图仅保留了原始结构连接组的度(degree)。

(2)SC-informed surrogates:与第一种情况相反,这里使用经验性结构谐波的系数进行置换,并用于重建,从而获得功能信号。这些信号是随机化的,但建立在真实结构架构之上。

这种方法的灵感来自于统计重采样(statistical resampling),通常在时间或空间域中通过傅里叶(Fourier)或小波(wavelet)系数的洗牌(shuffling)来操作。其基本原理是保留经验数据的一个有意义的特征(例如傅里叶或小波系数的能量分布),从而生成一个强有力零假设的替代数据集。通过设计,替代数据保留了经验能量谱密度,但破坏了由经验活动表达的谐波分量之间的特定相互作用。由于对每个时间点应用相同的符号随机化,因此保持了时间点之间的相关性和非平稳性。这个过程可以重复多次,以获得一组替代数据,从而可以推导出测试指标的空分布。

文章还提到了使用这些零模型来观察功能连接(FC)在从数据中移除经验结构和/或功能特征后的表现。图3显示,正如人们可能预期的那样,SC-ignorant替代功能连接(FC)没有显示出任何特定的模式。相反,SC-informed替代FC突出显示了与基础结构相似的结构化模式;特别是在枕叶、楔叶、楔前叶、额叶、前中央和下顶叶的区域,这些区域的节点强度突出。然而,可以直观地观察到经验性FC时间序列的连接模式比SC-informed替代的连接模式更具有对比度。为了评估经验性FC中存在的额外信息内容,研究人员将SC-informed替代和经验性FC矩阵的节点强度与结构连接组的节点强度进行了比较。不出所料,替代FC与SC之间的斯皮尔曼相关性(Spearman correlation)显著强于经验性FC与SC之间的相关性(r1⁄4 0:93 vs r1⁄4 0:46,差异显著,p <0:05,使用跨替代的非参数测试评估)。

图3 替代功能信号是在没有结构连接组(SC)信息的情况下,通过谱系数随机化生成的。通过计算成对的经验性/替代功能信号之间的相关性,得到平均功能连接组(FC),并进行比较。

大脑活动根据结构耦合进行分解。为了研究功能与结构耦合的程度,文章引入了基于观察到的功能数据的能量谱密度中值分割的频谱低通和高通滤波器。然后,通过对谐波系数分别应用理想低通和高通滤波器,逐时间点对功能数据进行滤波。重建可以按节点(大脑区域)评估,以活动解耦(高通滤)与耦合(低通滤)能量的比率表示,即结构解耦指数。这些节点度量(nodal measures)的统计显著性通过与基于结构连接组(SC)形成的替代物进行比较来评估。图4显示了替代(无论是有或没有SC知识生成的)和经验性功能信号的平均结构解耦合指数(以二进制对数形式表示)。第一个分布(图4a)显示了不考虑结构连接组的替代物具有较高的结构解耦合,这是预期的。相反,当研究人员观察基于结构连接组形成的替代功能信号(图4b)时,可以看到结构的影响。在这种情况下,与人类大脑中已知的结构核心连接相似的模式,包括后内侧和顶叶皮层区域,显示出与结构图的更高耦合(蓝色区域)。在评估经验性功能时间序列的结构解耦合时,出现了两个明显不同的模式,分别比预期更解耦合或更耦合:前者主要包含眶额前区、颞叶区域,识别出高级认知网络(图4c,红色);后者集中在初级感觉区域,跨越听觉(颞叶)、视觉(枕叶)和躯体运动(中枢前/后)网络(图4c,蓝色)。

图4 结构解耦指数作为衡量功能与结构区域耦合的新指标。这里绘制了三种不同大脑活动信号的指数的二进制对数,突出了它们与结构连接组的耦合。

结构解耦揭示了行为相关梯度。如图5a所示,这揭示了一种宏观尺度的皮层组织光谱,将结构耦合区域与多感官处理、视觉感知、运动/眼动、听觉处理联系在一起,而在另一端,将结构解耦区域与奖励、情感、情感处理、社会认知、语言/视觉语义、记忆、认知控制联系在一起。这一结果与之前基于仅由功能连接(FC)定义的梯度的研究结果一致(图5b)。并且研究对同一受试者两次测试-重测静息态采集的分析显示出了结果的高度可靠性。

图5 结构解耦指数根据行为相关梯度揭示组织。将NeuroSynth meta分析应用于解耦指数梯度

4. 讨论

大脑活动自然地被其解剖结构所塑造;然而,这种塑造的程度很难量化。以前的模拟方法,特别是,提出了与结构连接组(SC)耦合的大规模神经群体模型,以解释一些经验性功能连接(FC)的模式,包括模块化组织和时空动态。这种宏观层面的生成方法允许验证大脑区域之间相互作用产生的大脑活动特性,给定了区域动态模型和区域间连接约束。在这里,文章采用了一种替代方法,其中经验性功能大脑活动的测量保持中心地位。通过结构连接组的谐波分解,文章首先清楚地证明了观察到的大脑活动更倾向于使用具有较低图频率的分量表达;即那些更符合连接组约束的分量。随后是功能信号的能量谱密度投影到结构谐波上,与Atasoy等人的研究结果一致,表明活动模式更倾向于在连接组上表达平滑度。这一观察是建立结构解耦指数的关键,该指数量化了功能-结构关系。

首先将大脑活动过滤为两部分:一部分通过保留低频成分与SC耦合,另一部分通过保留高频成分与SC解耦合。然后可以计算并评估这些部分的能量比率,针对每个大脑区域。文章在三种情况下评估获得的解耦指数:基于经验SC的简单配置模型的替代功能数据;基于经验SC的替代功能数据;以及经验功能数据。使经验数据脱颖而出的关键属性是,结构信息分量的使用并非随机组织;即激活模式随着结构信息分量的特定组合而产生,这些在替代数据中是随机化的(尽管振幅被保留)。替代数据诱导了解耦指数的空分布,从而允许在经验数据中检测显著的功能-结构耦合强度。这揭示了从与结构显著耦合到显著解耦合的区域的宏观梯度。这种梯度基本上将耦合的感觉-运动区域与解耦合的高级认知区域对立起来。

meta分析证实了获得的梯度对应于从低到高级认知功能的行为相关排序,类似于Margulies等人基于FC数据展示的皮层组织。这些发现进一步证实了大量证据,主张存在一个跨越初级感觉运动和跨模态区域的全局皮层组织梯度,迄今为止不仅为FC所证明,也为皮层微结构、基因表达和时间层次所证明。特别是,功能处理时间尺度的长度被报告为感觉-运动区域的毫秒-秒,以短暂瞬时活动为特征,到跨模态关联区域的秒-分钟,编码较慢的内在动态。此外,遗传成像工作也提供了类似的描述,其中低级与高级区域通过表达支持快速诱发神经传递的时间精度的基因与较慢、持续或节律性激活的基因来表征。因此,感觉-运动区域的较高耦合强度可以由它们需要快速可靠地对外部(和内部)刺激做出反应来解释。相反,高级认知过程如情景记忆或自我参照思维则不太可预测,因此与SC的耦合较少。这种解释也得到了先前关于fMRI个体化工作的证实,表明只有高级区域携带特定于个体的信息。

视觉(枕叶)区域是首批在观察经验性与替代结构耦合差异时,从感觉-运动网络中部分区分出来的区域。这一有趣的发现与其他不同方法的报告相匹配,这些报告指出视觉区域与其他感官模式之间的区分。遗传学研究中也观察到了类似的发现,其中次级遗传表达梯度揭示了感官模式之间的相同区分。此外,这种视觉皮层的分离也在皮层厚度梯度中被发现,显示了初级感觉网络区域(枕叶区域除外)的较高值。不同属性的图对解耦合指数的影响可以进一步研究。特别是,虽然配置模型仅保留了节点强度,但另一种选择可能是保留空间嵌入的距离,如文献中所提议的那样。最后,所提出的框架没有包括也没有补偿噪声成分。假设噪声在频谱域中的贡献是均匀的,如果忽略噪声,解耦合估计将受到正向偏差。例如,容易受到高伪影影响的眶额前额叶皮层区域,可能实际上比实际情况更解耦合。因此,meta分析特别重要,为解耦合指数的功能相关性提供证据,表明它捕捉的模式比反映信号噪声比更有意义。总之,这项研究展示了一种原则性的方法来量化功能信号与基础结构的耦合强度。该方法学开辟了新的研究途径,以调查区域间耦合的差异,以及区域内的变化;例如,随时间或实验条件的变化。由于神经系统疾病和紊乱引起的变化可能是另一个有前景的应用,这可能带来新的见解。这项研究提供了一种新的方法来量化功能信号与大脑结构之间的关系,并为未来研究区域间耦合的差异和区域内的变化提供了新的途径。这对于理解神经系统疾病和紊乱的影响也具有潜在的应用价值。

精读分享

主题内容:

数据:

Human Connectome Project (HCP):提供了大脑结构连接组和功能连接组数据,用于分析大脑活动与结构连接组之间的关系。

扩散加权扫描 (Diffusion-weighted scans):使用MRtrix3软件进行分析,包括估计多层多组织响应函数、约束球面反卷积和生成具有107条输出流线的纤维束图。

Glasser多模态皮层图谱:转换为体积,并分割为两个半球,用于皮层分割成N = 360个感兴趣区域,并生成结构连接组。

功能磁共振成像 (fMRI):包括静息态fMRI数据,用于分析大脑活动模式。

方法:

信号处理:将大脑活动建模为图上的信号,通过图拉普拉斯算子的特征分解计算谐波分量。

图傅里叶变换 (GFT):将图信号转换为其频谱表示,用于分析信号在不同频率下的分布。

谱滤波:使用理想低通/高通滤波器对谐波分量进行滤波,分解功能信号为与结构耦合和解耦合的部分。

结构解耦指数 (Structural-decoupling index):量化特定区域结构-功能耦合的度量,通过比较耦合和解耦合信号的能量比率计算。

替代数据分析:生成两种类型的替代功能信号(s(rand1) 和 s(rand2)),一种忽略结构连接组知识,另一种包含结构连接组知识,用于评估结构-功能耦合强度。

统计测试:使用非参数测试评估结构解耦指数的显著性,基于替代数据集生成的空分布。

meta分析 (Meta-analysis):使用NeuroSynth进行meta分析,评估与结构解耦指数相关的主题。

结果:

结构与功能的耦合:研究结果表明大脑活动与结构连接组(SC)之间存在耦合关系。这种耦合关系可以通过结构解耦指数(Structural-decoupling index)来量化,该指数揭示了大脑区域与结构耦合的强度。

宏观梯度发现:文章发现了一个从与结构耦合较强的区域到与结构耦合较弱的区域的宏观梯度。这种梯度从低级感觉功能(如感觉和运动)到高级认知功能(如记忆、情感、社会认知)。

行为相关性:结构解耦指数与行为相关梯度一致,这表明该指数能够捕捉到比随机替代数据更有意义的模式。这种模式与大脑功能的空间分布一致,并且与先前的研究结果相符。

替代方法:通过与替代数据(surrogate data)比较,研究者能够检测经验数据中显著的功能-结构耦合强度。这表明经验性功能连接(FC)不是随机分布的,而是在真实结构架构的基础上构建的。

可靠性:对同一受试者进行两次测试-重测静息态采集的分析显示,结果具有很高的可靠性。

meta分析:使用NeuroSynth进行的元分析提供了与结构解耦指数相关的主题的行为特征的相似描述。

挑战与未来展望:

数据解释:如何更准确地解释结构解耦指数所揭示的模式,以及这些模式如何与行为和认知功能相关联。

计算资源:处理大规模神经影像数据集所需的计算资源可能非常庞大,这对研究的可行性构成挑战。

跨模态研究:结合不同的神经影像技术(如fMRI、PET、EEG等)来提供更全面的大脑功能和结构关系的理解。

网络控制论:利用网络控制论来研究如何通过特定的结构连接模式影响大脑功能和行为。

总结:

该文章通过引入结构解耦指数这一新指标,量化了大脑功能活动与结构连接组之间的耦合程度,并揭示了大脑功能活动的区域性特征,为理解大脑功能与结构连接提供了新的视角和研究途径。

参考文献:

Preti MG, Van De Ville D. Decoupling of brain function from structure reveals regional behavioral specialization in humans. Nat Commun 2019;10(1):4747; doi: 10.1038/s41467-019-12765-7.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值