过拟合(定义、出现的原因4种、解决方案7种)

定义

定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据。 ———《Machine Learning》Tom M.Mitchell


出现过拟合的原因

1.  训练集的数量级和模型的复杂度不匹配。训练集的数量级要小于模型的复杂度;

2.  训练集和测试集特征分布不一致;

3.  样本里的噪音数据干扰过大,大到模型过分记住了噪音特征,反而忽略了真实的输入输出间的关系;

4.  权值学习迭代次数足够多(Overtraining),拟合了训练数据中的噪声和训练样例中没有代表性的特征。

解决方案

(simpler model structure、 data augmentation、 regularization、 dropout、early stopping、ensemble、重新清洗数据

1.  simpler model structure

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值