过拟合的原因以及解决办法

1、什么是过拟合 
欠拟合是指模型没有能够很好的表现数据的结构,而出现的拟合度不高的情况。 
过拟合是指模型过分的拟合训练样本,但对测试样本预测准确率不高的情况,也就是说模型泛化能力很差。如下图所示: 
 

左边的结果过度拟合训练样本,导致过拟合。


2、过拟合的原因 
(1)数据特征的角度 
数据噪声导致的过拟合:噪声具有一定的随机性与欺骗性,如果把噪声作为有效信息的话,将会导致过拟合。 
缺乏代表性样本导致的过拟合:训练数据集不能很好的反应整体分布可能会导致过拟合;训练数据集较小,但模型过度细化会导致过拟合。 
(2)模型的角度 
由于模型过度复杂,使得模型对训练数据拟合较好,但同时拟合了噪声或者与目标不相关的信息导致了过拟合。 

3、过拟合、欠拟合的解决方法 

过拟合的可能解决方法: 
a、减少特征:删除与目标不相关特征,如一些特征选择方法 

b、正则化:正则化会保证每个特征有一定的效用,不会使某一特征特别重要。

 c、得到更多的训练样本

 d、迁移学习-----可以解决由于训练数据较小引起的过拟合。

 

欠拟合可能的解决方法: 
a、选择更复杂的模型 
b、增加新特征,如特征构建



 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值