团体程序设计天梯赛-练习集
L1-050 倒数第N个字符串 分数 15
给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增。例如当 L 为 3 时,序列为 { aaa, aab, aac, ..., aaz, aba, abb, ..., abz, ..., zzz }。这个序列的倒数第27个字符串就是 zyz。对于任意给定的 L,本题要求你给出对应序列倒数第 N 个字符串。
输入格式:
输入在一行中给出两个正整数 L(2 ≤ L ≤ 6)和 N(≤105)。
输出格式:
在一行中输出对应序列倒数第 N 个字符串。题目保证这个字符串是存在的。
输入样例:
3 7417
输出样例:
pat
解决方案:转换成十进制转26进制解决。
写的时候一直觉得应该是27进制,但每次测试都发现答案出现不同程度的错误。(比如说l=3时中间的字母输出不对,旁边的又是正确的;或者只有最后一个字母是正确的)后面看到csdn中都说是26进制,自己在稿纸上转换了几次才恍然大悟......
(下方附有我自己的理解)
代码:
#include <iostream>
#include <string>
using namespace std;
int main() {
int l, n;
cin >> l >> n;
string s;
int a;
int x = n - 1; //倒数第n个是从1开始,故让n-1使其从0开始
//使用除26取余法将十进制数转成26进制
for (int i = 0; i < l; i++) {
a = x % 26;
s.push_back('z' - a);
x /= 26;
}
for (int i = l - 1; i >= 0; i--) { //倒着输出
cout << s[i];
}
return 0;
}
为什么是26进制:
由倒数第一个为z,倒数第26个为a可知,第27个时就类似于二进制的“进1”。但值得注意的是进制先从0开始,所以1~26应该看成是0~25,到第26个“进1”。(转换成“倒数第0个为z,倒数第25个为a”)