L1-050 倒数第N个字符串(C++)

文章讲述了团体程序设计天梯赛中的一道问题,涉及将十进制数转化为26进制来找到等差递增序列中倒数第N个字符串的方法。关键在于理解序列是基于26进制的,例如倒数第27个对应a,因为序列从z倒数第26个开始是a。提供的代码示例展示了如何通过除26取余来实现这一转换,并输出结果。
摘要由CSDN通过智能技术生成

团体程序设计天梯赛-练习集

L1-050 倒数第N个字符串    分数 15

给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增。例如当 L 为 3 时,序列为 { aaa, aab, aac, ..., aaz, aba, abb, ..., abz, ..., zzz }。这个序列的倒数第27个字符串就是 zyz。对于任意给定的 L,本题要求你给出对应序列倒数第 N 个字符串。

输入格式:

输入在一行中给出两个正整数 L(2 ≤ L ≤ 6)和 N(≤105)。

输出格式:

在一行中输出对应序列倒数第 N 个字符串。题目保证这个字符串是存在的。

输入样例:

3 7417

输出样例:

pat

解决方案:转换成十进制转26进制解决。

        写的时候一直觉得应该是27进制,但每次测试都发现答案出现不同程度的错误。(比如说l=3时中间的字母输出不对,旁边的又是正确的;或者只有最后一个字母是正确的)后面看到csdn中都说是26进制,自己在稿纸上转换了几次才恍然大悟......

(下方附有我自己的理解)

代码:

#include <iostream>
#include <string>
using namespace std;

int main() {
	int l, n;
	cin >> l >> n;
	string s;
	int a;
	int x = n - 1;  //倒数第n个是从1开始,故让n-1使其从0开始
	//使用除26取余法将十进制数转成26进制
	for (int i = 0; i < l; i++) { 
		a = x % 26;
		s.push_back('z' - a);
		x /= 26;
	}
	for (int i = l - 1; i >= 0; i--) {  //倒着输出
		cout << s[i];
	}
	return 0;
}

为什么是26进制:
      由倒数第一个为z,倒数第26个为a可知,第27个时就类似于二进制的“进1”。但值得注意的是进制先从0开始,所以1~26应该看成是0~25,到第26个“进1”。(转换成“倒数第0个为z,倒数第25个为a”)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值