题目链接:https://www.patest.cn/contests/pat-b-practise/1062
一个分数一般写成两个整数相除的形式:N/M,其中M不为0。最简分数是指分子和分母没有公约数的分数表示形式。
现给定两个不相等的正分数 N1/M1 和 N2/M2,要求你按从小到大的顺序列出它们之间分母为K的最简分数。
输入格式:
输入在一行中按N/M的格式给出两个正分数,随后是一个正整数分母K,其间以空格分隔。题目保证给出的所有整数都不超过1000。
输出格式:
在一行中按N/M的格式列出两个给定分数之间分母为K的所有最简分数,按从小到大的顺序,其间以1个空格分隔。行首尾不得有多余空格。题目保证至少有1个输出。
输入样例:
7/18 13/20 12
输出样例:
5/12 7/12
解题思路:
采用通分的方法。先求M1,M2,K三者的最小公倍数L;然后计算通分后的分子的上下界,再对分子进行遍历找满足条件的分子,最后计算结果。
小tips:所给的两个分数中不一定是第一个小于第二个。
#include <iostream>
#include <cstdio>
using namespace std;
int gcd(int x,int y){//求最大公约数,最小公倍数为x/gcd(x,y)*y
return y==0?x:gcd(y,x%y);
}
int main(int argc, char const *argv[])
{
int N1,M1,N2,M2,K;
scanf("%d/%d %d/%d %d",&N1,&M1,&N2,&M2,&K);
if(N1*M2>N2*M1){
swap(N1,N2);
swap(M1,M2);
}
int l=M1/gcd(M1,M2)*M2;//求M1,M2,K
l=l/gcd(l,K)*K;//三者的最小公倍数
int min=l/M1*N1,max=l/M2*N2;
int count=0;//控制末尾没有空格
for(int i=min+1;i<max;i++){
if(i%(l/K)==0&&gcd(i/(l/K),K)==1){//满足条件的分子
if(count==0){
printf("%d/%d",i/(l/K),K);
count=1;
}
else
printf(" %d/%d",i/(l/K),K);
}
}
return 0;
}
结果: