线段树与树状数组基础及其应用

整体而言,线段树是包括树状数组的,即可以用树状数组解决的问题一般都能够用线段树解决,下面先介绍树状数组

一、树状数组相关概念解释

1.应用:

以O(logn)的复杂度快速求前缀和

2.主要操作:

(1)给某个位置上的数加上一个数

(2)求某一个前缀和

这两个操作都是以O(logn)的时间复杂度实现的,两个基本操作即单点修改,区间查询,其他的操作都是在这两个操作的基础上实现的,如区间修改,单点查询和区间修改和区间查询

3.基本原理,基本操作

(1)首先定义一个数组A[]:

(2)再定义一个树状数组C[],在C中,所有奇数都和A数组相等,我们将其定义为第0层:

(3)再来定义第1层,第1层中的C[2]为A[1]+A[2],而C[4]则在第三层,其值为C[4]=C[2]+C[3]+C[4],又因为C[2]=A[1]+A[2],故C[4]是前四项的和:

(4)依次地,可以画出整个树状数组的全貌:

从这张图中可以发现以下几点:

a.某个数在第几层取决于它最多能够被2的几次方整除(也可以看成末尾有几个零就是第几层)

b.假设x的二进制表示有k个零,C[X]表示x-2^k到x之间A[I]的和,其中2^k可以表示为lowbit(x),

(lowbit(x)=x&-x)或(lowbit(x)=x&(x-1))

(5)当要求某个前缀和时,需要递归操作,例如,若求前X个数的和,即求x-2^k到x之间A[I]的和加上后面的,依次递归,便可写出如下函数:

int query(int x)
{
    int res = 0;
    for (int i = x; i; i -= lowbit(i)) res += tr[i];
    return res;
}

(6)进行更新操作时,只需要改动几个数就可以,例如改动第七个元素的值,则只需要改动7,8,16:

代码如下:

void add(int x, int v)
{
    for (int i = x; i <= n; i += lowbit(i)) tr[i] += v;
}

不难看出,树状数组的这两个操作(单点修改,区间查询)复杂度均为O(logn)

二、树状数组基础应用

1.下面介绍开头提到的两个基本操作即单点修改,区间查询

(1)单点修改有两种情况

a.加一个数v,即A[I]+v;

b.将这个数改成v,即A[I]+=(-A[I])+ v ;

(2)求某个前缀和

求A[X]即C[X]-C[X-1];

其他的和前缀和相同,A[L]-A[R-1]即可

#include<iostream>
#include<cstdio>
using namespace std;
int n,m;
int a[100010],tree[100010];
int lowbit(int x)
{
    return x&-x;
}
void add(int x,int v)
{
    for(int i=x;i<=n;i+=lowbit(i))tree[i]+=v;
}
int query(int x)
{
    int res=0;
    for(int i=x;i;i-=lowbit(i))res+=tree[i];
    return res;
}
int  main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    for(int i=1;i<=n;i++)add(i,a[i]);
    while (m--)
    {
        int k, x, y;
        scanf("%d%d%d", &k, &x, &y);
        if (k == 0) printf("%d\n", query(y) - query(x - 1));
        else add(x, y);
    }
    return 0;
}

三、树状数组小结

小结:树状数组的三个核心代码即为

lowbit

int lowbit(int x)
{
    return x&-x;
}

add

void add(int x,int v)
{
    for(int i=x;i<=n;i+=lowbit(i))tree[i]+=v;
}

query

int query(int x)
{
    int res=0;
    for(int i=x;i;i-=lowbit(i))res+=tree[i];
    return res;
}

四、线段树的相关概念解释

  1. 线段树的应用:

以完全二叉树的结构,用于维护一个序列

2.具象解释

(1)以一个长度为7的序列解释:

线段树的每个根节点都是一个结构体

struct Node{
    int l,r;
    int sum;
}

这里以sum为例,根节点存放的是区间和

假设这个序列的七个数分别为1,2,3,4,5,6,7

则线段树的最后一个结点sum值为7 *(1+7)/ 2=28

将上面的序列均分为两端,则得到[1,7]的两个儿子[1,4]和[5,7]

依次继续分下去

最后得到一个完全二叉树

3.核心操作

(1)操作一:单点修改modify

样例解释:若把上面序列中的5改为8

则只需要递归地改动线上的结点即可

(2)操作二:区间查询query

假设要查询2-5上的和

检查此区间是否被覆盖,若覆盖,则直接加进去,否则递归寻找其儿子

最终只有上图中的2,3-4,5三个区间被用到了,计算时间复杂度最高为O(logn)

4.核心函数

(1)pushup:用子结点信息来更新当前节点信息

void pushup(int u)
{
    tree[u].sum=tree[u<<1].sum+tree[u<<1|1].sum;
}

(2)build:在一段区间上初始化线段树

void build(int u,int l,int r)
{
    if(l==r)tree[u]={l,r,a[r]};
    else
    {
        tree[u]={l,r};
        int mid=l+r>>1;
        build(u<<1,l,mid);
        build(u<<1|1,mid+1,r);
        pushup(u);
    }
}

(3)mulify:修改

void modify(int u,int x,int v)
{
    if(tree[u].l==tree[u].r)tree[u].sum+=v;
    else {
        int mid=tree[u].l+tree[u].r>>1;
        if(x<=mid)modify(u<<1,x,v);
        else modify(u<<1|1,x,v);
        pushup(u);
    }
}

(4)query:查询区间和

int query(int u,int l,int r)
{
    if(tree[u].l>=l&&tree[u].r<=r)return tree[u].sum;
    int mid=tree[u].l+tree[u].r>>1;
    int sum=0;
    if(l<=mid)sum=query(u<<1,l,r);
    if(r>mid)sum+=query(u<<1|1,l,r);
    return sum;
}
  1. 线段树的存储方式

如图,线段树的存储方式类似于堆

五、线段树基础应用

1.依然是上面那个题

总代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=100010;
int n,m;
int a[N];
struct Node{
    int l,r;
    int sum;
}tree[N*4];
void pushup(int u)
{
    tree[u].sum=tree[u<<1].sum+tree[u<<1|1].sum;
}
void build(int u,int l,int r)
{
    if(l==r)tree[u]={l,r,a[r]};
    else
    {
        tree[u]={l,r};
        int mid=l+r>>1;
        build(u<<1,l,mid);
        build(u<<1|1,mid+1,r);
        pushup(u);
    }
}
int query(int u,int l,int r)
{
    if(tree[u].l>=l&&tree[u].r<=r)return tree[u].sum;
    int mid=tree[u].l+tree[u].r>>1;
    int sum=0;
    if(l<=mid)sum=query(u<<1,l,r);
    if(r>mid)sum+=query(u<<1|1,l,r);
    return sum;
}
void modify(int u,int x,int v)
{
    if(tree[u].l==tree[u].r)tree[u].sum+=v;
    else {
        int mid=tree[u].l+tree[u].r>>1;
        if(x<=mid)modify(u<<1,x,v);
        else modify(u<<1|1,x,v);
        pushup(u);
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    build(1,1,n);
    int k,a,b;
    while(m--)
    {
        scanf("%d%d%d",&k,&a,&b);
        if(k==0)printf("%d\n",query(1,a,b));
        else modify(1,a,b);
    }
    return 0;
}

2.其他应用:求数列区间最大值

只需要将刚才的sum运算改为max运算即可

总代码如下:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <climits>
using namespace std;
const int N = 100010;
int n, m;
int w[N];
struct Node
{
    int l, r;
    int maxv;
}tr[N * 4];
void build(int u, int l, int r)
{
    if (l == r) tr[u] = {l, r, w[r]};
    else
    {
        tr[u] = {l, r};
        int mid = l + r >> 1;
        build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
        tr[u].maxv = max(tr[u << 1].maxv, tr[u << 1 | 1].maxv);
    }
}
int query(int u, int l, int r)
{
    if (tr[u].l >= l && tr[u].r <= r) return tr[u].maxv;
    int mid = tr[u].l + tr[u].r >> 1;
    int maxv = INT_MIN;
    if (l <= mid) maxv = query(u << 1, l, r);
    if (r > mid) maxv = max(maxv, query(u << 1 | 1, l, r));
    return maxv;
}
int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);

    build(1, 1, n);

    int l, r;
    while (m -- )
    {
        scanf("%d%d", &l, &r);
        printf("%d\n", query(1, l, r));
    }

    return 0;
}

六、小结

树状数组虽然代码短,但是应用限制多,使用情景少

而线段树虽然代码长,运行速度慢,但是可以应付掉大部分问题,包括可以用树状数组解决的题目

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
线段树树状数组都是用来解决区间相关问题的数据结构线段树是一种二叉树形式的数据结构,用于解决区间查询问题。每个节点表示一个区间,根节点表示整个区间,通过对区间进行适当的划分,将原问题划分为子问题,递归地构建线段树线段树的叶子节点表示原始数组的单个元素,而其他节点表示其子区间的一些统计信息,如和、最大值、最小值等。通过适当的操作,可以在O(logN)的时间内查询区间的统计信息,也可以在O(logN)的时间内更新一个元素或一个区间的值。 树状数组是一种实现类似累加的数据结构,用于解决前缀查询问题。树状数组的底层数据结构是一个数组,通过对数组的某些位置进行增加或查询操作,可以在O(logN)的时间内得到累加值。数组的索引和实际数值之间存在一种特殊的关系,即某个位置的累加值等于该位置的二进制表示中最低位的连续1的个数。树状数组的区间查询通过将原始数组转换为差分数组来实现,将查询问题转换为若干个单点查询。 线段树树状数组在解决问题时都具有一些特定的优势和适用场景。线段树适用于一些需要频繁修改和查询区间统计信息的问题,如区间最值、区间和等。而树状数组适用于一些需要频繁查询前缀和的问题,如求逆序对的数量或统计小于某个数的元素个数等。根据具体的问题需要,我们可以选择合适的数据结构来解决和优化计算效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AAAAAZBX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值