我们先来看一下最经典的埃拉特斯特尼筛法。时间复杂度为O(n loglog n)
int ans[MAXN];
void Prime(int n)
{
int cnt=0;
memset(prime,1,sizeof(prime));
prime[0]=prime[1]=0;
for(int i=2;i<n;i++)
{
if(vis[i])
{
ans[cnt++]=i;//保存素数
for(int j=i*i;j<n;j+=i)//i*i开始进行了稍微的优化
prime[j]=0;//不是素数
}
}
return ;
}
显然,当一个数是素数的时候,那么他的倍数肯定是合数,筛选标记即可。从i*i而不从i*2开始,是因为已经i*3,i*2早已经被2,3筛过了。
由此,我们也可以发现有的合数被重复筛除,例如30,2*15筛了一次,5*6重复筛除,所以也就有了我们下面要提到的欧拉线性筛法。
不会重复筛除,是线性O(n)的复杂度。
const int MAXN=3000001;
int prime[MAXN];//保存素数
bool vis[MAXN];//初始化
int Prime(int n)
{
int cnt=0;
memset(vis,0,sizeof(vis));
for(int i=2;i<n;i++)
{
if(!vis[i])
prime[cnt++]=i;
for(int j=0;j<cnt&&i*prime[j]<n;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)//关键
break;
}
}
return cnt;//返回小于n的素数的个数
}
首先,先明确一个条件,任何合数都能表示成一系列素数的积。
然后利用了每个合数必有一个最小素因子,每个合数仅被它的最小素因子筛去正好一次。所以为线性时间。
代码中体现在:
if(i%prime[j]==0)break;
prime数组 中的素数是递增的,当 i 能整除 prime[j],那么 i*prime[j+1] 这个合数肯定被 prime[j] 乘以某个数筛掉。
因为i中含有prime[j], prime[j] 比 prime[j+1] 小。接下去的素数同理。所以不用筛下去了。
在满足i%prme[j]==0这个条件之前以及第一次满足改条件时,prime[j]必定是prime[j]*i的最小因子。
如果还不是很理解,可以手动模拟一下。
直接应用的一个简单例子。求n以内的素数个数。
http://blog.csdn.net/nk_test/article/details/46242311
欧拉函数:在数论中,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。
先给出一个结论:
设P是素数,
若p是x的约数,则E(x*p)=E(x)*p.
若p不是x的约数,则E(x*p)=E(x)*E(p)=E(x)*(p-1).
证明如下:
E(x)表示比x小的且与x互质的正整数的个数。
*若p是素数,E(p)=p-1。
*E(p^k)=p^k-p^(k-1)=(p-1)*P^(k-1)
证:令n=p^k,小于n的正整数数共有n-1即(p^k-1)个,其中与p不质的数共[p^(k-1)-1]个(分别为1*p,2*p,3*p...p(p^(k-1)-1))。
所以E(p^k)=(p^k-1)-(p^(k-1)-1)=p^k-p^(k-1).得证。
*若ab互质,则E(a*b)=E(a)*E(b),欧拉函数是积性函数.
*对任意数n都可以唯一分解成n=p1^a1*p2^a2*p3^a3*...*pn^an(pi为素数).
则E(n)=E(p1^a1)*E(p2^a2)*E(p3^a3)*...*E(pn^an)
=(p1-1)*p1^(a1-1)*(p2-1)*p2^(a2-1)*...*(pn-1)*pn^(an-1)
=(p1^a1*p2^a2*p3^a3*...*pn^an)*[(p1-1)*(p2-1)*(p3-1)*...*(pn-1)]/(p1*p2*p3*...*pn)
=n*(1-1/p1)*(1-1/p2)*...*(1-1/pn)
* E(p^k) =(p-1)*p^(k-1)=(p-1)*p^(k-2)*p
E(p^(k-1))=(p-1)*p^(k-2)
->当k>1时,E(p^k)=E(p*p^(k-1))=E(p^(k-1))*p.
(当k=1时,E(p)=p-1.)
由上式: 设P是素数,
若p是x的约数,则E(x*p)=E(x)*p.
若p不是x的约数,则E(x*p)=E(x)*E(p)=E(x)*(p-1). 证明结束。
http://acm.hdu.edu.cn/showproblem.php?pid=2824 具体的应用
求一段区间的欧拉函数的和。
#include<iostream>
#include<string>
#include<cstring>
using namespace std;
const int MAXN=3000001;
int prime[MAXN];//保存素数
bool vis[MAXN];//初始化
int phi[MAXN];//欧拉函数
void Prime(int n)
{
int cnt=0;
memset(vis,0,sizeof(vis));
for(int i=2;i<n;i++)
{
if(!vis[i])
{
prime[cnt++]=i;
phi[i]=i-1;// if p is prime,then phi[i]=i-1
}
for(int j=0;j<cnt&&i*prime[j]<n;j++)
{
__int64 k=i*prime[j];
vis[k]=1;
if(i%prime[j]==0)//关键
{
phi[k]=phi[i]*prime[j];
break;
}
else
phi[k]=phi[i]*(prime[j]-1);
}
}
}
int main()
{
int a,b;
Prime(3000000);
while(cin>>a>>b)
{
__int64 ans=0;
for(int i=a;i<=b;i++)
ans+=phi[i];
cout<<ans<<endl;
}
}
还有 http://acm.hdu.edu.cn/showproblem.php?pid=3501
分析:对于整数n,如果x(x<n)与n互质,那么(n-x)也与n是互质的;同理如果x(x<n)与n不互质,那么(n-x)也与n是不互质的。知道这个之后就可以得出:在0<x<n时,存在这样的x与n互质的个数假设为num(可以通过欧拉函数求得),那么所有与n互质的x的和sum=num*n/2.
/*利用欧拉函数即可求解,1~n比n小且与n互素的数的总和为
sum(n) = n * phi(n) / 2;那么可以先求出1~n-1的总和,然后
减去sum(n)即可。*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
#define MOD 1000000007
LL n;
LL Eular(LL n) {
LL cnt=1;
for(int i=2; i*i<=n; i++) {
if(n%i==0) {
cnt*=(i-1);
n/=i;
while(n%i==0) {
n/=i;
cnt*=i;
}
}
}
if(n>1)cnt*=(n-1);
return cnt;
}
int main() {
while(~scanf("%lld",&n)&&n) {
LL ans=(n+1)*n/2-n;
ans-=Eular(n)*n/2;
printf("%I64d\n",(ans%MOD+MOD)%MOD);
}
return 0;
}