本文建立在已经了解这三种算法基本思想的基础上,不再对算法进行详细的描述,而是对思想进行比较优秀的代码实现的总结,可以直接用于ACM题目或者实际问题的解决中。
Dijkstra算法:
Dijkstra算法是指定一个源点,求得这个源点到各个点的最短路径。Dijkstra算法通过不断的松弛边,并且进行记录,每次更新相邻点的路径,采用类似贪心的思想,使两点之间的距离成为最短的路径。
Dijkstra算法缺点是不能有负权边的值。
#define INF 0x3f3f3f3
const int MAX_N=200;
int map[MAX_N][MAX_N],vis[MAX_N],dis[MAX_N];//dis代表到每个点的最短距离
//注意先把map[][]=INF
void dijkstr(int x,int m){//x代表开始点,m代表顶点个数
for(int i=1;i<=m;i++){
dis[i]=map[x][i];
vis[i]=0;
// if(map[x][i]!=INF)
//pre[i]=x;
//else
//pre[i]=-1;
}
int p;
vis[x]=1;
for(int i=1;i<=m;i++){
int min=INF;
for(int j=1;j<=m;j++){
if(!vis[j]&&dis[j]<min){
min=dis[j];
p=j;
}
}
vis[p]=1;
for(int j=1;j<=m;j++){
if(!vis[j]&&dis[p]+map[p][j]<dis[j])
{
dis[j]=dis[p]+map[p][j];
//pre[j]=p;
}
}
}
}
int main(){
int m,n,a,b,c;
void dijkstr(int x,int n);
while(cin>>m>>n&&(m||n)){
memset(vis,0,sizeof(vis));
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++){
map[i][j]=INF;
}
for(int j=1;j<=n;j++){
cin>>a>>b>>c;
map[a][b]=map[b][a]=c;
}
dijkstr(1,m);
cout<<dis[m]<<endl;
/* int p,len=1;
p=m;
while(p>=1)
{
ans[len++]=p;
p=pre[p];
}
for(int r=len-1;r>=1;r--)
cout<<ans[r];*/
}
return 0;
}
floyd算法是一个经典的动态规划算法,可以求得任意两点之间的最短路,但是复杂度是O(N3),复杂度较高,不适宜大量点之间最短路的计算。
//floyd算法传递闭包,f数组不能另开,就一定维持这一个
void Floyd()
{
for(int k = 1; k <= N; k++) // 最外层必须是k
{
for(int i = 1; i <= N; i++)
{
for(int j = 1; j <= N; j++)
{
f[i][j] = f[i][j] || (f[i][k] && f[k][j]); // 判断连通性
}
}
}
}
//floyd算法求最短路
void Floyd()
{
for(int k = 1; k <= N; k++) // 最外层必须是k
{
for(int i = 1; i <= N; i++)
{
for(int j = 1; j <= N; j++)
{
if(f[i][j]>f[i][k]+f[k][j])
f[i][j]=f[i][k]+f[k][j];
}
}
}
}
SPFA算法:
单源最短路径中如果有负权边的存在,这个时候就不能使用Dijkstra算法了。SPFA是对Bellman_Ford算法的优化,使用一个先进先出的队列用来保存待优化的结点。
/*
* 单源最短路SPFA
* 时间复杂度 0(kE)
* 这个是队列实现,有时候改成栈实现会更加快,很容易修改
* 这个复杂度是不定的
*/
const int MAXN=1010;
const int INF=0x3f3f3f3f;
struct Edge
{
int v;
int cost;
Edge(int _v=0,int _cost=0):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
void addedge(int u,int v,int w)
{
E[u].push_back(Edge(v,w));
}
bool vis[MAXN];//在队列标志
int cnt[MAXN];//每个点的入队列次数
int dist[MAXN];
bool SPFA(int start,int n)
{
memset(vis,false,sizeof(vis));
for(int i=1;i<=n;i++)
dist[i]=INF;
vis[start]=true;
dist[start]=0;
queue<int>que;
while(!que.empty())
que.pop();
que.push(start);
memset(cnt,0,sizeof(cnt));
cnt[start]=1;
while(!que.empty())
{
int u=que.front();
que.pop();
vis[u]=false;
for(int i=0;i<E[u].size();i++)
{
int v=E[u][i].v;
if(dist[v]>dist[u]+E[u][i].cost)
{
dist[v]=dist[u]+E[u][i].cost;
if(!vis[v])
{
vis[v]=true;
que.push(v);
if(++cnt[v]>n)
return false;
//cnt[i]为入队列次数,用来判定是否存在负环回路
}
}
}
}
return true;
}