SPFA算法(模板)
昨天才打了dijkstra堆优化的模板,今天再打这个……发现两个算法好接近啊,特别特别像
基本思路:一开始时将源点加队,每次从队列中取出一个元素,并对所有与他相邻的点进行松弛,若某个相邻的点松弛成功,则将其入队。 直到队列为空时算法结束。(减少了不必要的计算)
传送门
Dijkstra(堆优化):点这里哈哈哈
OK,代码上有详细解释,上代码:
#include <iostream>
#include <cstdio>
#include <queue>
#include <cmath>
#include <vector>
#define INF 666666
using namespace std;
struct ed{int v,c;};
vector<ed>g[10000];
queue<int>q;
int n,m,k,t1,t2,t3;
int vis[10000],d[10000];
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;++i)
d[i]=INF;//初始化d数组,赋为“无限大”
for(int i=1;i<=m;++i)
{
cin>>t1>>t2>>t3;
g[t1].push_back((ed){t2,t3});
g[t2].push_back((ed){t1,t3});//注意是有向图还是无向图
}
q.push(k);//把源点k放入队列
d[k]=0;//不解释,但一定不能少,你可以把这条语句注释了运行一下看哈哈哈
while(!q.empty())
{
int u=q.front(),v;//有没有一种dijkstra堆优化的感觉???
q.pop();
vis[u]=0;
for(int i=0;i<g[u].size();++i)//枚举vector数组g中从u到目标点的路径
if(d[v=g[u][i].v]>d[u]+g[u][i].c){ //如果从起点直接走到v点的距离大于从起点走到中转站
d[v]=d[u]+g[u][i].c;// u,再走到v的距离,那就更新吧
if(!vis[v]) q.push(v),vis[v]=1;//不必纠结g[u][i].v和g[u][i].c了,他们俩本来就是一对
}//如果v点没有被标记过,就入队
}
for(int i=1;i<=n;++i)
cout<<d[i]<<" ";
return 0;
}
我的QQ:1206668472
END