解决The kernel appears to have died. It will restart automatically问题

在用jupyter lab跑CNN时,给我报了这个错误
在这里插入图片描述
在网上查了很多原因,都没法解决,又问了老师,老师说很多情况都有可能导致kernel崩溃,让我用pycharm来跑一下
用pycharm跑,就看出了问题:
在这里插入图片描述

2022-07-12 10:33:02.993081: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-12 10:33:03.650384: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3962 MB memory:  -> device: 0, name: NVIDIA GeForce RTX 2060, pci bus id: 0000:01:00.0, compute capability: 7.5
Epoch 1/50
2022-07-12 10:33:05.914469: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8401

Process finished with exit code -1073740791 (0xC0000409)

这里可以看到使用的是GPU来做运算,程序退出了一个负数,但是不知道具体是什么错。
我们把这个Emulate terminal in output console打开
在这里插入图片描述
就可以看到详细的报错信息

Could not locate zlibwapi.dll. Please make sure it is in your library path!

所以就按照他说的做
下载链接
之后,将zlibwapi.dll 放到 环境变量 path 中(具体:…cuda…\bin)将zlibwapi.lib 放到 环境变量 path 中(具体:…cuda…\lib | lib64)
把这两个文件放到对应的cuda文件夹下之后,就可以跑起来了

<think>嗯,用户遇到了Jupyter Notebook内核重启的问题,具体是在一个名为exp.ipynb的文件中出现的。我需要根据提供的引用内容来找出可能的原因和解决办法。首先,引用里提到内核崩溃可能的原因包括内存不足、库版本冲突、多线程问题、硬件资源不足、代码错误或内核崩溃等。比如引用[1]、[2]、[3]都提到了内核崩溃的情况,可能和TensorFlow或NumPy有关。然后,解决方法方面,引用[4]和[5]提到了设置环境变量KMP_DUPLICATE_LIB_OK为TRUE,允许加载重复库。这可能解决库冲突的问题。此外,用户可能需要检查代码是否有错误,或者是否有内存泄漏的问题,比如大数组或未释放的资源。还有,更新库版本或者降低并行线程数也可能有帮助。用户可能需要分步骤来排查问题,先尝试设置环境变量,再检查代码,然后查看资源使用情况,最后考虑硬件或软件更新。需要把这些步骤整理成清晰的解决方案,并给出相关问题供用户进一步参考。</think>### Jupyter Notebook内核崩溃问题解决方案 当Jupyter Notebook出现`Kernel Restarting`报错时,通常是由于资源限制、库冲突或代码逻辑问题导致。以下是分步解决方案: --- #### 1. **检查库冲突(常见原因)** - **问题定位**:某些库(如NumPy、TensorFlow)的多线程依赖可能引发冲突[^4][^5]。 - **解决方法**:在代码开头添加以下环境变量设置: ```python import os os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' # 允许加载重复库 ``` 此操作可缓解因库重复加载导致的内核崩溃[^5]。 --- #### 2. **排查内存/资源问题** - **内存不足**:若代码涉及大型数据集或复杂计算,可能超出系统内存限制。例如: ```python import numpy as np arr = np.ones((100000, 100000)) # 可能触发内存溢出 ``` 需优化数据结构或使用分批处理[^2]。 - **GPU资源竞争**:若使用深度学习框架(如TensorFlow/PyTorch),需确认显存未被其他进程占用,可通过`nvidia-smi`命令查看[^3]。 --- #### 3. **验证代码逻辑** - **无限循环或死锁**:检查是否存在未正确终止的循环或线程。例如: ```python while True: # 错误示例,导致内核无响应 pass ``` - **异常处理**:添加`try-except`块定位具体错误: ```python try: # 可能出错的代码 except Exception as e: print(f"Error: {e}") ``` --- #### 4. **更新软件环境** - 升级Jupyter和相关库至最新版本: ```bash pip install --upgrade jupyter numpy tensorflow # 按需替换库名 ``` - 若使用虚拟环境(如conda),重建环境可能解决依赖问题[^1]。 --- #### 5. **降低并行负载** - 限制多线程/进程数量,例如在TensorFlow中设置: ```python import tensorflow as tf tf.config.threading.set_inter_op_parallelism_threads(2) # 减少线程数 ``` --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值