自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

The Thinker

Life is short, you need Python!

原创 基本医学图像

1. 3D坐标转换 3D的医学图像(如CT+MRI)往往是根据扫描仪测量的数据转换而来。CT数据的坐标都是基于CT扫描仪的,坐标系(世界坐标系)单位为mm,每个病例的 原点origin 和 体素间距voxel 都不一样。但是在图像坐标系下,原点坐标统一为(0,0,0),体素间距为 1 。那么如何...

2019-10-01 09:14:43

阅读数 33

评论数 0

原创 贝叶斯分析之利用线性回归模型理解并预测数据(三)

这一节主要讲多元线性回归模型 一元线性回归讨论的是一个因变量与一个自变量的关系,但是在很多例子中,模型可能包含多个自变量。在一元线性回归模型中,我们希望一条直线来解释数据,而在多元线性回归模型中,我们希望找到一个维度为 m 的超平面。 以 y=α+0.9∗x1+1.5∗x2y = \a...

2019-10-01 09:14:30

阅读数 10

评论数 0

原创 贝叶斯分析之利用线性回归模型理解并预测数据(二)

这一节主要讲分层线性回归与多项式回归模型 1. 分层线性回归 先了解一下什么是分层模型? 以抛硬币问题为例,后验 yyy 服从伯努利分布,先验 θ\thetaθ 服从Beta分布,那么Beta分布的两个参数 α,β\alpha, \betaα,β 是怎么来的呢?如果给予 α,β\al...

2019-10-01 09:14:04

阅读数 9

评论数 0

原创 贝叶斯分析之利用线性回归模型理解并预测数据(一)

问题:利用给定的数据建立 y 与 x 之间的线性模型 y=α+βxy=\alpha+\beta xy=α+βx ? 1. 构造出数据集 假设一个线性模型: y=2.5+0.9∗xy=2.5+ 0.9 * xy=2.5+0.9∗x,在生成数据时加一个扰动项(eps_real) np.rando...

2019-10-01 09:13:49

阅读数 27

评论数 0

原创 TensorFlow内置交叉熵损失函数

今天讲解Tensorflow内置4中交叉熵损失函数: sigmoid_cross_entropy_with_logits aa aaa a aaa 1. sigmoid_cross_entropy_with_logits tf.nn.sigmoid_cross_entropy...

2019-10-01 09:13:30

阅读数 13

评论数 0

原创 利用os模块编写一个能实现dir -l输出的程序

在Linux下命令ls和dir都有相同的功能:打印当前文件夹目录。 注:ls 是Linux的原装命令,dir是原来dos的命令,Linux选择兼容了此个dos命令,所以dir和ls在功能上是一样的。 1. ls命令 ...

2019-09-01 09:29:34

阅读数 690

评论数 0

原创 Neural Architecture Search: A Survey

论文地址:https://arxiv.org/abs/1808.05377v3 论文主要是介绍了Neural Architecture Search(NAS)近几年的发展,在介绍NAS之前我想抛出一个问题:为什么要研究AutoML(NAS可以看做AutoML的一个子领域)? 回到论文,为什么要...

2019-09-01 09:29:12

阅读数 103

评论数 0

原创 如何读取NIFTI格式图像(.nii文件)

在医学图像处理中,我们经常使用一种NIFTI格式图像(.nii文件),现在我们来看看 什么是.nii文件? 该如何读取.nii文件? 1. NIFTI格式图像 什么是NIFTI(Neuroimaging Informatics Technology Initiative)格...

2019-09-01 09:08:36

阅读数 229

评论数 0

原创 JupyterLab入门篇

1. Jupyter Lab简介 Jupyter源于Ipython Notebook,是使用Python(也有R、Julia、Node等其他语言的内核)进行代码演示、数据分析、可视化、教学的很好的工具,对Python的愈加流行和在AI领域的领导地位有很大的推动作用。 Jupyter Lab是J...

2019-09-01 09:08:18

阅读数 49

评论数 0

原创 贝叶斯理论

1. 似然 似然(likelihood)与概率(probability)是完全不同的数学对象,但又有着极其相似的身影。 概率(密度)f(x∣θ)f(x | \theta)f(x∣θ):表示给定 θ\thetaθ 下样本随机向量 X=xX=xX=x 的可能性; 似然f(θ∣x)f(\theta...

2019-09-01 08:52:37

阅读数 139

评论数 0

原创 统计学习方法三要素

统计学习方法由模型、策略和算法构成的,即 方法 = 模型 + 策略 + 算法。 1. 模型 在监督学习过程中,模型就是所需要学习的条件概率分布或决策函数。模型的假设空间包含所有可能的条件概率分布或决策函数。 由决策函数表示的模型为非概率模型,其假设空间为: F={f∣Y=fθ(X),θ∈R...

2019-09-01 08:52:20

阅读数 74

评论数 0

原创 归一化与标准化

1归一化特点 对不同特征维度的伸缩变换的目的是使各个特征维度对目标函数的影响权重是一致的,即使得那些扁平分布的数据伸缩变换成类圆形。这也就改变了原始数据的一个分布。好处:1 提高迭代求解的收敛速度2 提高迭代求解的精度 2标准化特点 对不同特征维度的伸缩变换的目的是使得不同度量之间的...

2019-09-01 08:51:49

阅读数 132

评论数 0

转载 Multi-Armed Bandits

转自:微软研究院AI头条 链接:https://zhuanlan.zhihu.com/p/52727881 其他参考链接:https://zhuanlan.zhihu.com/p/52727881 转载只为学习用途,如有侵权,请联系本人删除!(这是我唯一一篇转载的博客>_&am...

2019-08-08 12:56:15

阅读数 59

评论数 0

原创 V-Net

论文地址:https://ieeexplore.ieee.org/abstract/document/7785132 项目地址:https://github.com/mattmacy/vnet.pytorch 1. 论文背景 医学图像大部分是3D Volumetric(如MRI),2D sl...

2019-08-07 16:25:58

阅读数 60

评论数 0

原创 如何阅读深度学习项目源码?

复现论文的必不可少的一步就是阅读作者开源的代码,但是大多数人往往瞥一眼代码就退怯了!退怯的原因归结起来往往有以下两点: (1)高度封装,一眼看上去看不懂 (2)使用了一些 “奇怪的东西”(看到装饰器@就撤) 今天如何阅读深度学习项目源码谈一些自己的理解 Table of Con...

2019-08-07 16:23:43

阅读数 91

评论数 0

原创 3D U-Net

论文地址:https://link.springer.com/chapter/10.1007/978-3-319-46723-8_49 Data:https://www.med.upenn.edu/sbia/brats2017.html 项目地址:https://github.com/elli...

2019-08-01 09:03:36

阅读数 124

评论数 4

原创 交叉熵损失函数

1. 交叉熵 交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。从数学角度上看,假设有两个概率分布,其中p表示真实分布,q表示非真实分布,在相同的一组事件中,交叉熵是用非真实分布q来表示某个事件发生所需要的平均比特数。 假设现...

2019-08-01 09:02:47

阅读数 122

评论数 0

原创 激活函数

课上一个偶然的提问让我觉得有必要重新思考一下激活函数,现以Rethinking Activation Function为题写下这篇博客。 Rethinking Activation Function 1. 什么是激活函数? 2. 为什么需要激活函数? 3. 激活函数类型? ...

2019-08-01 09:02:25

阅读数 19

评论数 0

原创 3D CNN

由于最近一个比赛要用到3D U-Net,所以有必要先了解一下3D CNN。本文主要针对3D CNN结构与原理进行详细讲解,对于其应用背景(Human Action Recognition)不作阐述。如果你现在对卷积还存在疑问,请参考这篇博客彻底弄懂卷积的内涵再继续看下文。 论文地址:https:...

2019-08-01 09:01:59

阅读数 111

评论数 0

原创 U-Net

论文地址:https://arxiv.org/abs/1505.04597v1 项目地址:https://github.com/zhixuhao/unet           &nbsp...

2019-08-01 09:01:03

阅读数 36

评论数 0

提示
确定要删除当前文章?
取消 删除