Tmotfl的博客

博客地址 tmotfl.top 欢迎访问

【POJ3252】Round Numbers 数位DP

Round Numbers

Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 15305 Accepted: 6215

Description

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone’ (also known as ‘Rock, Paper, Scissors’, ‘Ro, Sham, Bo’, and a host of other names) in order to make arbitrary decisions such as who gets to be milked first. They can’t even flip a coin because it’s so hard to toss using hooves.

They have thus resorted to “round number” matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both “round numbers”, the first cow wins,
otherwise the second cow wins.

A positive integer N is said to be a “round number” if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus, 9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many “round numbers” are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively Start and Finish.

Output

Line 1: A single integer that is the count of round numbers in the inclusive range Start..Finish

Sample Input

2 12

Sample Output

6

题解

数位Dp学习笔记
题目中要求,范围内二进制的数中0出现的次数大于1出现的次数。
我们只需要把区间变成二进制,然后在dfs的时候枚举二进制就可以,状态的话记录二进制中0出现的次数与1出现的次数的差,注意要加上32,数组中不能有负下标

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
const int MAXN=1030;
int n,m;
int a[MAXN],b[MAXN],num,dp[1000][1000];
int dfs(int pos,int S,int lead,int limit)
{
    if(pos==-1) 
        return S>=32;
    if(dp[pos][S]!=-1&&(!limit)&&(!lead)) 
        return dp[pos][S];
    int Tmp=0;
    int up=limit ? b[pos] : 1;
    for(int i=0;i<=up;i++)
    {
        if(lead && i==0) 
            Tmp+=dfs(pos-1,S,lead,limit&&i==b[pos]);
        else
            Tmp+=dfs(pos-1,S+(i==0 ? 1 : -1),lead && i==0,limit && i==b[pos]);
    }
    if(!limit&&(!lead)) 
        dp[pos][S]=Tmp;
    return Tmp;
}
int solve(int x)
{
    int num=0;
    while(x)
    {
        if(x&1) 
            b[num++]=1;
        else
            b[num++]=0;
        x>>=1;
    }
    return dfs(num-1,32,1,1);
}
int main()
{
    memset(dp,-1,sizeof(dp));
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        printf("%d\n",solve(m)-solve(n-1)); 
    }
    return 0;
}
阅读更多
个人分类: 数位Dp
上一篇【HDU4734】F(x) 数位Dp
下一篇【HDU3709】Balanced Number 数位DP
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭