这个问题比较麻烦,需要我们仔细审题,做出猜想,然后验证猜想。
我们先将问题简化一下,经过一个加油站需要加油,同时也要耗油。不如将这两个量合并成一个量,就是gas[i]-cost[i],也就是油量的变化量。
首先做出猜测,如果油量大于耗油量,是否就一定可以到达终点?
(这个证明一开始我找不出反例就认为是正确的了,证明是后面补充上的)
可以使用反证法,假设从最优出发点ai出发,到达ak没油了没法继续开了,那么数组可以分为三部分。ai...an,a1...ak,a[k+1]...a[n-1]。
三部分的和大于0,根据算法流程,中间部分为负,因为如果中间部分为正,我们就可以选择中间部分中的一部分作为出发点而不是ai。那么ai...ak部分必须为正。但是如果到达ak时没油了,这个ai...ak数组的和就一定是负数,这样就产生了矛盾。
那么进入第二个问题,怎么确定开始位置?
油储量有大有小,根据之前做过的一道题目“最大子序列”,我们可以找到储存油量最大的区间,但是对解题有实际帮助的不是区间的结尾,而是区间的开头。这也好办,只要把数组倒过来,结尾就变成了开头,而因为数字顺序只是倒过来了,区间的长度位置也没有发生变化。我们就很容易找到区间的开头。
解释的可能不算详细,但是我尽力了。。。官方的题解总是看的一头雾水。。。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int sum=0;
int max=0;
int maxpos=0;
for(int i=gas.size()-1;i>=0;i--){
sum+=gas[i]-cost[i];
if(sum>max){
max=sum;
maxpos=i;
}
}
if(sum<0) return -1;
return maxpos;
}
};
算法时间复杂度为O(N),也就是说,只要一次循环就可以判断完成。