题目
- 加油站
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
-如果题目有解,该答案即为唯一答案。
-输入数组均为非空数组,且长度相同。
-输入数组中的元素均为非负数。
示例 1:
输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出:
3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入:
gas = [2,3,4]
cost = [3,4,3]
输出:
-1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
题解
方法一:一次遍历法
车开完全程的条件:
-车能从i站开到i+1
-所有站的油总量大于等于车子的总耗油量。
所以,我们假设总0站开始,一直到k站都正常,在开往k+1站时车子没油了,这时,应将起点设置为k+1站。
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int run = 0;
int rest = 0;
int start = 0;
for(int i = 0; i < gas.length; i++){
// run代表目前所剩余油量
run += gas[i] - cost[i];
// rest代表总剩余油量,若rest大于等于0,则说明能走完全程,否则返回-1
rest += gas[i] - cost[i];
// 如果i点剩余油量小于到i+1的所需油量,则起点start++,并将run剩余油量置于零
if(run < 0){
start = i + 1;
run = 0;
}
}
return rest >= 0 ? start : -1;
}
}
问题1: 为什么应该将起始站点设为k+1?
因为k->k+1站耗油太大,0->k站剩余油量都是不为负的,每减少一站,就少了一些剩余油量。所以如果从k前面的站点作为起始站,剩余油量不可能冲过k+1站。
问题2: 为什么如果k+1->end全部可以正常通行,且rest>=0就可以说明车子从k+1站点出发可以开完全程?
因为,起始点将当前路径分为A、B两部分。其中,必然有(1)A部分剩余油量<0。(2)B部分剩余油量>0。
所以,无论多少个站,都可以抽象为两个站点(A、B)。(1)从B站加满油出发,(2)开往A站,车加油,(3)再开回B站的过程。
重点:B剩余的油>=A缺少的总油。必然可以推出,B剩余的油>=A站点的每个子站点缺少的油。
复杂度分析:
时间复杂度:O(N)
空间复杂度:O(1)