Joint Sentiment/Topic Model & Aspect and Sentiment Unification Model

Joint Sentiment/Topic Model & Aspect and Sentiment Unification Model

参考文章:Joint Sentiment/Topic Model for Sentiment Analysis 
JST模型从文本检测情感和主题 
之前的工作缺点:基于机器学习的情感分类需要大量的人工标记; 一个领域训练的情感分类模型不能很好地应用于另一个领域; 主题/特征检测和情感分类经常分开来进行,忽略了它们的相互依赖性。

JST模型

  • 完全非监督,更加灵活,更容易适用于其他领域。
  • 通过考虑相互联系同时检测情感/主题。
LDA & JST
  • LDA
  • 两个矩阵: D×T 分布(文档-主题): θ T×W 分布(主题-词): ϕ
  • JST
  • 3个矩阵: D×S 分布(文档-情感): π D×S×T 分布(文档-情感-主题): θ D×S×W 分布(文档-情感-词): ϕ
JST的过程
  • 对每个文档d,选择一个分布 πdDir(γ)
  • 对于文档d下的每个情感标签l,选择一个分布 θd,lDir(α)
  • 对于文档d中的每个词:选择一个情感标签 liπd ;选择一个主题 ziθd,li ;从由主题 zi 和情感标签 liφlizi 定义的词分布中选择一个词 wi

提高情感检测准确率的一个方向是引入先验知识(互信息等)或者主观性词典。 
JST的分类性能与机器学习最好的性能接近,但是节省了很多标记工作。

ASUM模型

参考文章:Aspect and Sentiment Unification Model

  • SLDA(Sentence-LDA)的生成过程: 
    • 对每个方面z,绘制一个词分布 ϕzDirichlet(β)
    • 对每条评论d:绘制评论的方面分布 θdDirichlet(α) ;对每个句子:选择一个方面 zMultinomial(θd) ,产生词 wMultinomial(ϕz)
  • ASUM的生成过程 
    • 对每一个情感s和方面z对,绘制一个词分布 ϕszDirichlet(βs)
    • 对每一个文档d:绘制文档情感分布 πdDirichlet(γ) ;对于每一个情感s,绘制方面分布 θdsDirichlet(α) ;对于每一个句子:选择一个情感 jMultinomial(πd) ,给定情感j,选择一个方面 kMultinomial(θdj) ,产生词 wMultinomial(ϕjk)

ASUM通过使用非对称的 β 利用先验情感信息。如,期望“good, great”不可能在消极表达中出现,类似地,“bad, annoying”不可能在在积极表达中出现。这可以编码到 β 里, β 里的元素对应通常的积极情感词,在消极情感方面值小以及通常的消极情感词,在积极情感方面值小。隐变量 θπϕ 通过Gibbs采样推理。在马尔科夫链的每个转换步中,第i个句子的情感和方面根据条件概率选择。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值