第一章:线性空间(如何用代数来研究几何)
1.1线性空间
定义:给定一个集合V以及一个数域F,若有一个映射满足V×V—>V,以及另一个映射V×F—>V,则称前一个映射为V上的加法,后一个映射为V上的数乘法,并且这两个运算满足通常的运算规则,则称这个集合V关于此+和*是F上的线性空间。简称V是线性空间,V中的元素也称为向量,线性空间也叫向量空间。
域:对+、-、*、➗都封闭的数字集合,如复数集C、实数集R以及有理数集Q。
内积空间的作用:定义内积空间之后,就可以将线性空间中的夹角、长度推广到其他空间(因为长度是由内积定义的),然后用线性空间的那一套理论来分析其他空间的性质。满足内积这种操作的线性空间称为关于该内积的内积空间,也就是说内积空间是定义在线性空间上的。内积形容的是两个向量之间的相关程度。
为什么要选择基底:选择了一组基底之后,就可以将抽象的向量具体化,使抽象映射具体化。即转化为坐标与坐标之间的映射,而该映射可以用矩阵来表示。
GRAM矩阵:刻画了内积空间的所有性质,分析一个内积空间的性质,只需要分析其gram矩阵即可。