每日一题 day45 (DP topic)

problem

931. Minimum Falling Path Sum
Given an n x n array of integers matrix, return the minimum sum of any falling path through matrix.

A falling path starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position (row, col) will be (row + 1, col - 1), (row + 1, col), or (row + 1, col + 1).

Example 1:
在这里插入图片描述

Input: matrix = [[2,1,3],[6,5,4],[7,8,9]]
Output: 13
Explanation: There are two falling paths with a minimum sum as shown.

Example 2:

在这里插入图片描述

Input: matrix = [[-19,57],[-40,-5]]
Output: -59
Explanation: The falling path with a minimum sum is shown.

approach 1

class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for(int i=n-2; i>=0; i--){
            for(int j=0; j<n; j++){
                if(j==0) matrix[i][j] += min(matrix[i+1][j], matrix[i+1][j+1]);
                else if(j==n-1) matrix[i][j] += min(matrix[i+1][j-1], matrix[i+1][j]);
                else matrix[i][j] += min(min(matrix[i+1][j-1], matrix[i+1][j]), matrix[i+1][j+1]);
            }
        }
        int res = matrix[0][0];
        for(int i=1; i<n; i++)
            res = min(res, matrix[0][i]);
        return res;
    }
};

在这里插入图片描述
time complexity : O ( n ) O(n) O(n)
no extra space

approach 2 with some trick

class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for(int i=n-2; i>=0; i--)
            for(int j=0; j<n; j++)
                matrix[i][j] += min({matrix[i+1][max(j-1, 0)], matrix[i+1][j], matrix[i+1][min(n-1, j+1)]});
        int res = matrix[0][0];
        for(int i=1; i<n; i++)
            res = min(res, matrix[0][i]);
        return res;
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值