problem
931. Minimum Falling Path Sum
Given an n x n array of integers matrix, return the minimum sum of any falling path through matrix.
A falling path starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position (row, col) will be (row + 1, col - 1), (row + 1, col), or (row + 1, col + 1).
Example 1:
Input: matrix = [[2,1,3],[6,5,4],[7,8,9]]
Output: 13
Explanation: There are two falling paths with a minimum sum as shown.
Example 2:
Input: matrix = [[-19,57],[-40,-5]]
Output: -59
Explanation: The falling path with a minimum sum is shown.
approach 1
class Solution {
public:
int minFallingPathSum(vector<vector<int>>& matrix) {
int n = matrix.size();
for(int i=n-2; i>=0; i--){
for(int j=0; j<n; j++){
if(j==0) matrix[i][j] += min(matrix[i+1][j], matrix[i+1][j+1]);
else if(j==n-1) matrix[i][j] += min(matrix[i+1][j-1], matrix[i+1][j]);
else matrix[i][j] += min(min(matrix[i+1][j-1], matrix[i+1][j]), matrix[i+1][j+1]);
}
}
int res = matrix[0][0];
for(int i=1; i<n; i++)
res = min(res, matrix[0][i]);
return res;
}
};
time complexity
:
O
(
n
)
O(n)
O(n)
no extra space
approach 2 with some trick
class Solution {
public:
int minFallingPathSum(vector<vector<int>>& matrix) {
int n = matrix.size();
for(int i=n-2; i>=0; i--)
for(int j=0; j<n; j++)
matrix[i][j] += min({matrix[i+1][max(j-1, 0)], matrix[i+1][j], matrix[i+1][min(n-1, j+1)]});
int res = matrix[0][0];
for(int i=1; i<n; i++)
res = min(res, matrix[0][i]);
return res;
}
};