动态规划:背包问题(DP系列)

01背包问题

一、问题描述:有n 个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现;

三、动态规划的原理及过程:

  eg:number=4,capacity=8

i

1

2

3

4

w(体积)

2

3

4

5

v(价值)

3

4

5

6

 

1、原理

  动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

2、过程

  a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选),Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积(重量);

  b) 建立模型,即求max(V1X1+V2X2+…+VnXn);

  c) 约束条件,W1X1+W2X2+…+WnXn<capacity;

  d) 定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值;

  e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。判断该问题是否满足最优性原理,采用反证法证明:

    假设(X1,X2,…,Xn)01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,

    假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+VnYn)+V1X> (V2X2+V3X3+…+VnXn)+V1X1;

    而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X> (V1X1+V2X2+…+VnXn);

    该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;

  f) 寻找递推关系式,面对当前商品有两种可能性:

    第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);

    第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{ V(i-1,j)V(i-1,j-w(i))+v(i) }

       其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);

    由此可以得出递推关系式:

    1) j<w(i)      V(i,j)=V(i-1,j)

    2) j>=w(i)     V(i,j)=max V(i-1,j),V(i-1,j-w(i))+v(i) }

  g) 填表,首先初始化边界条件V(0,j)=V(i,0)=0;

 

  h) 然后一行一行的填表,

    1) 如i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;

    2) 又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{ V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;

    3) 如此下去,填到最后一个i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{ V(4-1,8),V(4-1,8-w(4))+v(4) }=max{9,4+6}=10;所以填完表如下图:

 

void FindMax()//动态规划
  {
      int i,j;
      //填表
      for(i=1;i<=number;i++)
      {
          for(j=1;j<=capacity;j++)
          {
              if(j<w[i])//包装不进             {
                 V[i][j]=V[i-1][j];
             }
             else//能装
             {
                 if(V[i-1][j]>V[i-1][j-w[i]]+v[i])//不装价值大
                 {
                     V[i][j]=V[i-1][j];
                 }
                 else//前i-1个物品的最优解与第i个物品的价值之和更大
                 {
                     V[i][j]=V[i-1][j-w[i]]+v[i];
                 }
             }
         }
     }
 }
用动态转移方程可以简化该代码,可以用作模板记住

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int dp[1000];
int v[1000];
int w[1000]
int main()
{
	int n,m;
	while(cin>>n>>m)
	{
		memset(dp,0,sizeof(dp));
		for(int i=0;i<n;i++)
		{
			cin>>v[i]>>w[i];
		}
	    for(int i=0;i<n;i++)
	    {
	    	for(int j=m;j>=w[i];j--)
	    	dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
		}
		cout<<dp[m]<<endl;
	}
return 0;
 } 

完全背包

对于背包问题在前面动态规划 - 0-1背包问题的算法优化已经讲到了关于0-1背包问题的解法,0-1背包问题是最基本的背包问题,它的特点是:每一件物品之多只能选择一件,即在背包中该物品数量只有0和1两种情况。

现在扩展一下,有一个容积为V的背包,同时有n种物品,每种物品均有无数多个,并且每种物品的都有自己的体积和价值。求使用该背包最多能够装的物品价值总和。

这就是完全背包问题。

如果按照0-1背包的思路求解该问题,可设当前物品的体积为w,价值为v,考虑到背包中最多存放V/w件该物品,那么该物品的可选数量就为V/w件。依次可以对所有的物品进行拆分,最后对拆分的所有物品做0-1背包即可得到答案。但是,这样拆分会使物品数量大大增加,其时间复杂度为:O(V*∑ni=1(V/wi))。

可见,当V较大时每个物品的体积较小时,其时间复杂度会显著增大。所以将完全背包问题转化为0-1背包问题去解决的方法不可靠。

在0-1背包的解决算法中,其中一段代码是该算法的核心算法,如下:

for(int i=0;i<n;i++)
	    {
	    	for(int j=m;j>=w[i];j--)
	    	dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
		}

在这段代码中,之所将j初始化为S,逆序循环更新状态是为了保证在更新dp[j]时,dp[j-w[i]]的状态尚未因为本次更新而发生改变,即等价于由

dp[i-1][j-w[i]]转移得到dp[i][j]。保证了更新dp[j]时,dp[j-w[i]]是没有放入物品i时的数据dp[i-1][j-w[i]]

在解决完全背包问题时,可以借鉴这个思路。在完全背包中,每个物品可以被无限次选择,那么状态dp[i][j]恰好可以由可能已经放入物品i的状态dp[i][j-w[i]]转移而来。可以将上面的代码改写如下:

for(int i=0;i<n;i++)
	    {
	    	for(int j=w[i];j<=m;j++)
	    	dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
		}







  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值