DP(动态规划)解决01背包问题

背包问题

背包问题是一类经典的动态规划问题(DP问题),非常灵活、变体多样,然我想最基础的背包问题透彻理解之后,变体问题自然迎刃而解。下面介绍两类最简单的背包问题:01背包问题和完全背包问题,而两类问题之中,又以01背包问题为重。

01背包问题

我们先来看看01背包问题的题目吧:
有n件物品,每件物品的重量为w[i],价值为c[i]。现有一个容量为V的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中每种物品都有1件。
样例:
5 8 //n == 5 , V == 8
3 5 1 2 2 //w[i]
4 5 2 1 3 //c[i]
好,看到题目,我想脑中第一个浮现的做法就是暴力枚举,枚举每一件物品放或者不放进背包,显然,每件背包都有两种选择,因此的话,n件物品就有2^n种情况,时间复杂度是O(2 ^n),显然这是十分糟糕的。而使用DP就可以将复杂度降为O(nV)。
DP做法分析:
我们令dp[i][v]表示前 i 件物品(1<=i<=n,0<=v<=V)恰好装入容量为v的背包中所能获得的最大价值。好,那么怎么求解dp[i][v]呢?
考虑对第 i 件物品的选择策略,有两种选择策略:

  • 不放第 i 件物品,那么问题就转化为前 i - 1 件物品恰好装入容量为v的背包中所能获得的最大价值,也即dp[i-1][v]
  • 放第 i 件物品,那么问题就转化为前 i - 1 件物品恰好装入容量为v - w[i]的背包中所能获得的最大价值,也即dp[i-1][v-w[i]]+c[i]
    由于只有两种策略,且要求能获得最大价值,因此
    dp[i][v] = max{dp[i-1][v],dp[i-1][v-w[i]]+c[i]}(1<=i<=n,w[i]<=v<=V)
    上面这个就是状态转移方程。注意到dp[i][v]只与之前的状态dp[i-1][]有关,所以可以枚举从1到n,v从0到V,通过边界dp[0][v] = 0(0<=v<=V)(即前0件物品放入任何容量为v的背包中都只能获得价值0)就可以把整个dp数组递推出来。而由于dp[i][v]表示的恰好是为v的情况,,所以需要枚举dp[n][v] (0<=v<=V) ,取得最大值之后才是最后的结果。
    因此可以写出代码:
for(int i = 1;i<=n;i++){
   
	for(int v = w[i];v<=V;v++){
   
		dp[i][v] = max(dp[i-
  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值