DP(动态规划)解决01背包问题

背包问题

背包问题是一类经典的动态规划问题(DP问题),非常灵活、变体多样,然我想最基础的背包问题透彻理解之后,变体问题自然迎刃而解。下面介绍两类最简单的背包问题:01背包问题和完全背包问题,而两类问题之中,又以01背包问题为重。

01背包问题

我们先来看看01背包问题的题目吧:
有n件物品,每件物品的重量为w[i],价值为c[i]。现有一个容量为V的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中每种物品都有1件。
样例:
5 8 //n == 5 , V == 8
3 5 1 2 2 //w[i]
4 5 2 1 3 //c[i]
好,看到题目,我想脑中第一个浮现的做法就是暴力枚举,枚举每一件物品放或者不放进背包,显然,每件背包都有两种选择,因此的话,n件物品就有2^n种情况,时间复杂度是O(2 ^n),显然这是十分糟糕的。而使用DP就可以将复杂度降为O(nV)。
DP做法分析:
我们令dp[i][v]表示前 i 件物品(1<=i<=n,0<=v<=V)恰好装入容量为v的背包中所能获得的最大价值。好,那么怎么求解dp[i][v]呢?
考虑对第 i 件物品的选择策略,有两种选择策略:

  • 不放第 i 件物品,那么问题就转化为前 i - 1 件物品恰好装入容量为v的背包中所能获得的最大价值,也即dp[i-1][v]
  • 放第 i 件物品,那么问题就转化为前 i - 1 件物品恰好装入容量为v - w[i]的背包中所能获得的最大价值,也即dp[i-1][v-w[i]]+c[i]
    由于只有两种策略,且要求能获得最大价值,因此
    dp[i][v] = max{dp[i-1][v],dp[i-1][v-w[i]]+c[i]}(1<=i<=n,w[i]<=v<=V)
    上面这个就是状态转移方程。注意到dp[i][v]只与之前的状态dp[i-1][]有关,所以可以枚举从1到n,v从0到V,通过边界dp[0][v] = 0(0<=v<=V)(即前0件物品放入任何容量为v的背包中都只能获得价值0)就可以把整个dp数组递推出来。而由于dp[i][v]表示的恰好是为v的情况,,所以需要枚举dp[n][v] (0<=v<=V) ,取得最大值之后才是最后的结果。
    因此可以写出代码:
for(int i = 1;i<=n;i++){
	for(int v = w[i];v<=V;v++){
		dp[i][v] = max(dp[i-1][v],dp[i-1][v-w[i]]+c[i]);
	}
}

可以知道,时间复杂度和空间复杂度都是O(nV),其中时间复杂度已经无法再优化,但是空间复杂度还是可以继续优化的。
注意到状态转移方程中计算dp[i][v]时总是只需要dp[i-1][v]左侧部分的数据(自己可以画个简单的示意图看看),且当计算dp[i+1][]的部分时,dp[i-1]的数据就完全用不到了(只需要用到dp[i][ ]),因此不妨直接开一个一维数组dp[v] (即把第一维省去),枚举方向为i从1到n,v从V到0(逆序!)这样状态转移方程改变为dp[v] = max(dp[v],dp[v-w[i]]+c[i])(1<=i<=n,w[i]<=v<=V)
这样的修改对应到图中可以理解为:
v的枚举顺序变为从右到左,dp[i][v]右边的部分为刚计算过的需要保存给下一行使用的数据,而dp[i][v]左上角的阴影部分为当前需要使用的部分。将这两者结合一下,即把dp[i][v]左上角和右边的部分放在一个数组里,每计算出一个dp[i][v],就相当于把dp[i-1][v]抹消,因此在后面的运算dp[i-1][v]再也用不到了。这种技巧称为滚动数组,需掌握。
代码如下:

for(int i = 1;i<=n;i++){
	for(int v = V;v>=w[i];v--){
		dp[v] = max (dp[v],dp[v-w[i]]+c[i]);
	}
}

这样01背包问题就可以用一维数组表示来解决了,空间复杂度优化为O(V)。
有一点特别说明下:如果用二维数组存放,v的枚举是顺序还是逆序都无所谓;但如果使用一维数组存放,则v的枚举必须是逆序!
完整的求解01背包的代码如下:

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 100;//物品最大件数
const int maxv = 1000;//V的上限
int w[maxn],c[maxn],dp[maxv];
int main(){
	//输入背包的各个数据 
	int n,V;
	scanf("%d%d",&n,&V);
	for(int i = 1;i<=n;i++){
		scanf("%d",&w[i]);
	}
	for(int i = 1;i<=n;i++){
		scanf("%d",&c[i]);
	}
	//边界
	for(int v = 0;v<=V;v++){
		dp[v] = 0;
	} 
	for(int i = 1;i<=n;i++){
		for(int v = V;v>=w[i];v--){
			//状态转移方程
			dp[v] = max(dp[v],dp[v-w[i]]+c[i]); 
		}
	}
	//寻找dp[0...V]中最大的即为答案
	int max = 0;
	for(int v = 0;v<=V;v++){
		if(dp[v]>max){
			max = dp[v];
		}
	} 
	printf("%d\n",max);
	return 0;
} 

动态规划是如何避免重复计算的问题再01背包问题中非常明显。在一开始暴力枚举物品放或者不放背包时,其实忽略了一个特性:第 i 件物品放或者不放而产生的最大值完全可以由前面 i - 1件物品的最大值来决定的,而暴力做法无视了这一点。
另外,01背包问题中的每个物品都可以看作一个阶段,这个阶段中的状态由dp[i][0] ~ dp[i][V],它们均由上一个阶段的状态得到。事实上,对能够划分阶段的问题来说,都可以尝试把阶段作为状态的一维,这可以使我们更方便地得到满足无后效性的状态。从中也可以得到这么一个技巧,如果当前设计的状态不满足无后效性,那么不妨把状态进行升维,即增加一维或若干维来表示相应的信息,这样可能就能满足无后效性了

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值