对于简单的线性回归理解

一、简单的线性回归介绍
在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。一个带有一个自变量的线性回归方程代表一条直线。我们需要对线性回归结果进行统计分析。

二、线性回归方程的求法
x为X数据的平均值,y为Y数据的平均值

步骤一:b1=∑ (X[i]-x)(Y[i]-y) / ∑ (X[i]-x)^2
步骤二:b0=y-b1x

三、线性回归方程的python代码实例及个人注解。(该例网上到处都是,但对于理解线性回归非常有帮助,本人对此进行一些注解及个人见解)

import numpy as np
def fitSLR(x, y): 
n = len(x) 
dinominator = 0 
numerator = 0   
for i in range(0, n):   
numerator += (x[i] - np.mean(x))*(y[i] - np.mean(y))       
dinominator += (x[i] - np.mean(x))**2  #(实现步骤一)
b1 = numerator/float(dinominator) 
b0 = np.mean(y)/float(np.mean(x))   #(实现步骤二)
#(个人见解:float就是一个数据转换,因为Python那个除法是截断除,如果是浮点数的话就可以除出小数,所以个人认为加不加都行)
return b0, b1
#(一下通过给定数据,按以上给定的求法实现)
def predict(x, b0, b1):  
return b0 + x*b1
x = [1, 3, 2, 1, 3]y = [14, 24, 18, 17, 27]    #(定义数据集)
b0, b1 = fitSLR(x, y)
print "intercept:", b0, " slope:", b1
x_test = 6
y_test = predict(6, b0, b1)	#(求当X的测试值为6时,对应的y的预测值)
print "y_test:", y_test

#四、利用sklearn实现
from sklearn.datasets import make_regression
import tensorflow as tf, matplotlib.pyplot as mp

#创建数据
x, y_real, coef = make_regression(n_features=1, noise=9, coef=True)
x = x.reshape(-1)
#初始化W系数【shape=(1,),在[-1,1]随机取值】
W = tf.Variable(tf.random_uniform([1], -1, 1))
#初始化b系数【shape=(1,),值为0】
b = tf.Variable(tf.zeros([1]))

#线性回归方程
y = W * x + b
print(W, b, y, sep='\n')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值