我理解的线性回归

一、烦人符号解析
1、回归首先是y为连续值
2、?^= ?(?) y加上三角表示预测的值
3、? 为训练样本数据(data),N为训练样本数目,R代表全体实数

二、回归任务—根据XX预测XX。
例如根据广告投放量预测产品销量

三、最简单的回归—线性回归
1、y=wx; 把w和x都看成是向量,w0是偏置bias,其他w是权重/回归系数
x去除第一个常数项1(就是和w0乘的那个家伙),剩下的个数就是特征维数
2、线性回归模型—一条线两边散落零星点
根据横轴坐标就能知道y的值,能跟真实的零星点对比
这样的直线可以有好几条,判断哪条好用—预测残差,说白了就是每个零星点向直线画线,
残差平方和—线段长度平方的总和,越小越好(最小也被称为最小二乘
3、损失函数—用来度量真实值与预测值差多少
L2损失就是残差平和:二次函数处处可导,优化计算方便,但对噪声敏感(一平方就很大,占的比重也就很大)
L1损失就是绝对值和:在零处不可导(一点可导的含义就是:
在x=x0处两侧极限存在且相等,则称函数在x=x0处可导)
双L结合为Huber函数—预测残差y-y^即r小于等于某值时,用L2其余用L1,解决了0处不可导的问题
4、
过拟合—过于复杂的模型与训练数据拟合的好,与测试数据拟合的不好
欠拟合—简单的模型与训练数据和测试数据拟合的都不好
正则项的目的就是减弱过拟合
在L2损失函数中+L2正则项就是岭回归
L2正则项—权重平方和乘以?(正则参数或者叫超参数)
L1正则项—权重绝对值和乘以?
PS:对截距项不惩罚
?越大,回归系数越小,越不容易过拟合(9阶多项式,回归系数超大)
Lasso回归—L2损失+L1正则
弹性网络-–L2损失+(L1正则+L2正则)用p和1-p连接两个正则 0<=p<=1
5、目标函数也就是损失函数的最优解
1)一阶导数为0—奇异值分解 (sigular value decomposition,SVD) 是一种正交矩阵分解法,使用SVD分解法的用途是解最小平方误差法
2)梯度下降法当样本数目?很大或者特征维数?很大时, SVD计算复杂度高,或者
机器的内存根本不够。
•可采用迭代求解:梯度下降法……(只能找到局部最小值)
点各维度导数组成的向量就是梯度,记为?或????
3)次梯度法—解决零处不可导的问题,但是它收敛慢,所以lasso推荐使用坐标轴下降法—沿坐标轴搜索最小值

6、评价模型好坏
Scikit-Learn中的score,Metric(评估预测误差)
从全体训练集中分出一部分不参与训练,用来校验,但这样是训练集减少,不好,用交叉验证解决—就是训练集分份,重复几次,每次不同的份做校验集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值