# 机器学习入门——线性回归模型

线性回归

利用线性回归模型加载已知数据集,得到两个未知量之间的函数关系,利用得到的函数关系对未知实例进行预测。(前提:数据集里面的数据要能够有线性关系)

代码如下(含部分注释)

#导入模块
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import linear_model

#设置数组存储数据
datasets_X = []
datasets_Y = []

#读取文件数据,存入数组
#建议使用pandas库读取文件数据
fr = pd.read_csv('price.txt',names=['A','B'
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值