Eddy's 洗牌问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
Eddy是个ACMer,他不仅喜欢做ACM题,而且对于纸牌也有一定的研究,他在无聊时研究发现,如果他有2N张牌,编号为1,2,3..n,n+1,..2n。这也是最初的牌的顺序。通过一次洗牌可以把牌的序列变为n+1,1,n+2,2,n+3,3,n+4,4..2n,n。那么可以证明,对于任意自然数N,都可以在经过M次洗牌后第一次重新得到初始的顺序。编程对于小于100000的自然数N,求出M的值。
Input
每行一个整数N
Output
输出与之对应的M
Sample Input
20 1
Sample Output
20 2
又是扑克牌,直觉就是以为要用队列,仔细分析了一下,每个数据都有一个值与之对应,是不是类似斐波那契数列那样的递推呢,于是举了几组数据,并没有找到什么规律,不过还是从所举的这几组样例中看出了端倪,,题目要求变换多少次才能回到最初的序列,但是每个数字只在原来的位置上出现了一次(最开始不算),下一次出现在原来的位子上一定是回到了原序列;那么就以一来分析,它的位置每次都乘以2,到了n~2*n这个区间后又以反向的顺序乘以2,这样我们就可以得出规律了,再求它经过变换的次数回到最初的位置就行了;
代码一:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int n,x,m;
while(~scanf("%d",&n))
{
x=2;//
m=1;
while(x!=1)
{
if(x>n)
{
if(x==n+1)//规律一;
{
m++;
break;
}
else if(x==2*n)规律二; {
m*=2;
break;
}
else
{
// int xx=2*n+1-x;
// x=2*n+1-2*xx;
x=2*x-2*n-1;//规律三;
m++;
}
}
else
{
x*=2;
m++;
}
}
printf("%d\n",m);
}
return 0;
}
上面这个代码都是从样例中得出的规律,看起来较繁琐,下面是优化的代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int n,x,m;
while(~scanf("%d",&n))
{
x=2;
m=1;
while(x!=1)
{
x=x<=n?2*x:2*x-2*n-1;
m++;//这种思路与上面没什么区别,可能时间上会跑更久;
}
printf("%d\n",m);
}
return 0;
}