CINTA作业4:群、子群

1、证明命题6.6

在这里插入图片描述

证明:
因为 a a a ∈ \in G G G
所以存在 a − 1 a^{-1} a1使得 a a − 1 aa^{-1} aa1= e e e
b a a − 1 baa^{-1} baa1 = c a a − 1 caa^{-1} caa1,即 b e = c e be=ce be=ce, b = c b=c b=c
同理有 a a − 1 b = a a − 1 c aa^{-1}b=aa^{-1}c aa1b=aa1c, e b = e c , b = c eb=ec,b=c eb=ec,b=c

2、证明命题6.7

在这里插入图片描述

证明:
g m g n = g ⋅ g ⋅ ⋅ ⋅ g ⏞ m − 1 次 群 运 算 ⋅ g ⋅ g ⋅ ⋅ ⋅ g ⏞ n − 1 次 群 运 算 = g ⋅ g ⋅ ⋅ ⋅ g ⏞ m + n − 2 次 群 运 算 = g m + n g^mg^n=\overbrace{g\cdot g\cdot \cdot \cdot g}^{m-1次群运算}\cdot\overbrace{g\cdot g\cdot \cdot \cdot g}^{n-1次群运算}=\overbrace{g\cdot g\cdot \cdot \cdot g}^{m+n-2次群运算}=g^{m+n} gmgn=ggg m1ggg n1=ggg m+n2=gm+n
( g m ) n = g m ⋅ g m ⋅ ⋅ ⋅ g m ⏞ n − 1 次 群 运 算 = g m + m + m ⋅ ⋅ ⋅ m ⏞ n 个 m = g m n {(g^m)}{^n}=\overbrace{g^m\cdot g^m\cdot \cdot \cdot g^m}^{n-1次群运算}=g^{\overbrace {m+m+m\cdot \cdot\cdot m}^{n个m}}=g^{mn} (gm)n=gmgmgm n1=gm+m+mm nm=gmn

( g h ) n = ( ( ( g h ) − 1 ) − 1 ) n = ( ( g h ) − 1 ) − n = ( h − 1 g − 1 ) − n = g n h n (gh)^n=(((gh)^{-1})^{-1})^{n}=((gh)^{-1})^{-n}=(h^{-1}g^{-1})^{-n}=g^nh^n (gh)n=(((gh)1)1)n=((gh)1)n=(h1g1)n=gnhn

3、证明对任意偶数阶群 G,都存在 g ∈ G,g ≠ e 且 g²= e

4、给出命题6.8的完整证明

在这里插入图片描述
证明:
①充分性:因为 a , b ∈ H a,b\in H a,bH, H H H G G G的子群,所以 b − 1 ∈ H b^{-1}\in H b1H
由群的封闭性可知 a b − 1 ∈ H ab^{-1}\in H ab1H
②必要性:
对于必要性,只要检验 H 满足所有的群公理即可。

因为 H H H是群 G G G的非空子集
结合律:
对于 ∀ a , b , c ∈ H \forall a,b,c\in H a,b,cH都有 ∀ a , b , c ∈ G \forall a,b,c\in G a,b,cG
( a b ) c = a ( b c ) (ab)c=a(bc) (ab)c=a(bc)

单位元:
对于 ∀ a , a ∈ H \forall a,a \in H a,aH都有 e = a a − 1 ∈ H e=aa^{-1}\in H e=aa1H,存在单位元e

逆元:
对于 ∀ e , a ∈ H \forall e,a\in H e,aH都有 e a − 1 ∈ H ea^{-1}\in H ea1H,因为 e a − 1 = a − 1 ea^{-1}=a^{-1} ea1=a1,所以 a − 1 ∈ H a^{-1}\in H a1H,所以存在逆元

封闭性:
对于 ∀ a , b ∈ H \forall a,b\in H a,bH,都有 a − 1 , b − 1 ∈ H a^{-1},b^{-1}\in H a1,b1H,即 ∀ a , b − 1 ∈ H \forall a,b^{-1}\in H a,b1H,有 a ( b − 1 ) − 1 = a b ∈ H a(b^{-1})^{-1}=ab\in H a(b1)1=abH,满足封闭性

5、设 G G G是群,对任意 n ∈ N , i ∈ [ 0 , n ] , g i ∈ G n\in N,i\in [0,n],g_{i}\in G nN,i[0,n],giG。证明 g 0 g 1 ⋯ g n g_{0}g_{1}\cdots g_{n} g0g1gn的逆元是 g n − 1 ⋯ g 1 − 1 g 0 − 1 g_{n}^{-1}\cdots g_{1}^{-1}g_{0}^{-1} gn1g11g01

证明:
g = g 0 g 1 ⋯ g n g=g_{0}g_{1}\cdots g_{n} g=g0g1gn
由封闭性得: g ∈ G g\in G gG
存在 g − 1 ∈ G g^{-1}\in G g1G使得 g g − 1 = e gg^{-1}=e gg1=e
g 0 g 1 ⋯ g n g − 1 = e g_{0}g_{1}\cdots g_{n}g^{-1}=e g0g1gng1=e
又因为 g 0 g 0 − 1 = e , g 1 g 1 − 1 = e , ⋯   , g n g n − 1 = e g_{0}g_{0}^{-1}=e,g_{1}g_{1}^{-1}=e,\cdots ,g_{n}g_{n}^{-1}=e g0g01=e,g1g11=e,,gngn1=e
由消去律得 g − 1 = g n − 1 ⋯ g 1 − 1 g 0 − 1 g^{-1}=g_{n}^{-1}\cdots g_{1}^{-1}g_{0}^{-1} g1=gn1g11g01

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值