CINTA作业七:同态

1、如果 H 1 H_1 H1 H 2 H_2 H2是群 G G G的正规子群,证明 H 1 H 2 H_1H_2 H1H2也是群 G G G的正规子群

证明:
∵ H 1 \because H_1 H1 H 2 H_2 H2是群 G G G的正规子群
∴ ∀ g ∈ G \therefore \forall g\in G gG,有 g H 1 = H 1 g , g H 2 = H 2 g gH_1=H_1g,gH_2=H_2g gH1=H1g,gH2=H2g
∴ ∀ h 1 ∈ H 1 , ∀ h 2 ∈ H 2 \therefore \forall h_1\in H_1,\forall h_2\in H_2 h1H1,h2H2 , ∃ h 1 ′ ∈ H 1 , ∃ h 2 ′ ∈ H 2 \exist h_1'\in H_1,\exist h_2'\in H_2 h1H1,h2H2使得 g h 1 = h 1 ′ g , g h 2 = h 2 ′ g gh_1=h_1'g,gh_2=h_2'g gh1=h1g,gh2=h2g
g h 1 h 2 = h 1 ′ g h 2 = h 1 ′ h 2 ′ g gh_1h_2=h_1'gh_2=h_1'h_2'g gh1h2=h1gh2=h1h2g
即对于 ∀ g ∈ G , ∀ h 1 h 2 ∈ H 1 H 2 \forall g\in G,\forall h_1h_2\in H_1H_2 gG,h1h2H1H2 , ∃ h 1 h 2 ′ ∈ H 1 H 2 \exist h_1h_2'\in H_1H_2 h1h2H1H2使得 g h 1 h 2 = h 1 ′ h 2 ′ g gh_1h_2=h_1'h_2'g gh1h2=h1h2g
所以 H 1 H 2 H_1H_2 H1H2是群 G G G的正规子群

2、定义映射 ϕ : G ↦ G \phi: G \mapsto G ϕ:GG g ↦ g 2 g \mapsto g^2 gg2,请证明 ϕ \phi ϕ是一种群同态当且仅当 G G G是阿贝尔群

证明:
充分性:
∀ a , b ∈ G , 有 ϕ ( a b ) = ϕ ( a ) ϕ ( b ) \forall a,b\in G,有\phi(ab)=\phi(a)\phi(b) a,bG,ϕ(ab)=ϕ(a)ϕ(b)
( a b ) 2 = a 2 b 2 (ab)^2=a^2b^2 (ab)2=a2b2, a b a b = a 2 b 2 abab=a^2b^2 abab=a2b2, a a − 1 b a b b − 1 = a − 1 a 2 b 2 b − 1 aa^{-1}babb^{-1}=a^{-1}a^2b^2b^{-1} aa1babb1=a1a2b2b1, b a = a b ba=ab ba=ab
所以 G G G是阿贝尔群
必要性:
如果 G G G是阿贝尔群
∀ a , b ∈ G \forall a,b\in G a,bG,有 ϕ ( a b ) = ( a b ) 2 = a b a b \phi(ab)=(ab)^2=abab ϕ(ab)=(ab)2=abab, ϕ ( a ) = ( a ) 2 = a a \phi(a)=(a)^2=aa ϕ(a)=(a)2=aa, ϕ ( b ) = ( b ) 2 = b b \phi(b)=(b)^2=bb ϕ(b)=(b)2=bb
ϕ ( a ) ϕ ( b ) = a a b b = a b a b = ( a b ) 2 = ϕ ( a b ) \phi(a)\phi(b)=aabb=abab=(ab)^2=\phi(ab) ϕ(a)ϕ(b)=aabb=abab=(ab)2=ϕ(ab)
所以 ϕ \phi ϕ是一种群同态

3、证明:如果 H H H是群 G G G上指标为2的子群,则 H H H G G G的正规子群

证明:
依题意得 [ G : H ] = 2 [G:H]=2 [G:H]=2
g ∈ H g\in H gH时,有 g H = H = H g gH=H=Hg gH=H=Hg, H H H G G G的正规子群
g ∉ H g\notin H g/H时,有 g H ≠ H ≠ H g gH\neq H\neq Hg gH=H=Hg,设 G = H + H ′ G=H+H' G=H+H,则 g H = H ′ = H g gH=H'=Hg gH=H=Hg,即 H H H G G G的正规子群

4、证明:如果群 G G G是循环群,则商群 G / H G/H G/H也是循环群

证明:
对于 ∀ a ∈ G \forall a\in G aG,有 ( a H ) n = a n H (aH)^n=a^nH (aH)n=anH
a a a G G G的生成元时, a n a^n an能生成 G G G,即 G / H G/H G/H的每个元素都能由 a n H a^nH anH生成, a H aH aH是群 G / H G/H G/H的生成元,所以 G / H G/H G/H也是循环群

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值