题意 :
根据题意构建一个有向无环图,输出其所有的拓扑排序可能,并且按照字典序输出拓扑排序。
思路 :
用到的是一个DFS + 回溯的方法(我们已经知道DFS的输出本质其实就是一个拓扑排序,那么如何获得全部的拓扑排序呢?那自然是用到DFS的回溯了)这里就不多做解释。
这题还有一个比较麻烦的就是输入格式的读取,可能要花点功夫,其他的细节看代码吧。
#include<iostream>
#include<vector>
#include<map>
#include<string>
#include<algorithm>
using namespace std;
#define rep(i, a, b) for(int i = (a); i <= (b); i++)
#define lop(i, a, b) for(int i = (a); i < (b); i++)
#define dwn(i, a, b) for(int i = (a); i >= (b); i--)
#define ms(a, x) memset(a, x, sizeof(a))
#define el '\n'
typedef long long LL;
typedef pair<LL, LL> PLL;
typedef pair<int, int> PII;
const int MAXN = 1e7 + 10, md = 1e9 + 7, INF = 0x3f3f3f3f;
int n, m, cnt = 0;
vector<string> ans;//储存所有拓扑排序的答案
string res;//储存拓扑排序
vector<char> element;//储存元素
string temp;//临时输入
vector<int> Edge[30];//储存边
int vis[30], in[30];//记录访问情况和入度
map<char, int> mp;//用哈希表记录char和int
void DFS(int pos){
if(pos == n){
ans.push_back(res);
return;
}
lop(i, 0, n){//全体遍历
if(!vis[i] && !in[i]){
lop(j, 0, Edge[i].size()){
in[Edge[i][j]]--;
}
vis[i] = 1;
res.push_back(element[i]);
DFS(pos + 1);
vis[i] = 0;//开始回溯
res.erase(res.length() - 1);
lop(j, 0, Edge[i].size()){
in[Edge[i][j]]++;
}
}
}
}
void init(){
ans.clear();
mp.clear();
element.clear();
lop(i, 0, 20){
in[i] = 0;
Edge[i].clear();
}
}
int main(){
while(getline(cin, temp)){
init();
//cout << temp << el;
while(temp == "")
break;
lop(i, 0, temp.length()){
if(temp[i] >= 'a' && temp[i] <= 'z'){
element.push_back(temp[i]);
mp[temp[i]] = element.size() - 1;
}
}
getline(cin, temp);
char from, to;
int opt = 0;
for(int i = 0; i < temp.length(); i += 2){
if(!opt){
from = temp[i];
opt++;
}
else if(opt){
to = temp[i];
Edge[mp[from]].push_back(mp[to]);
in[mp[to]]++;
opt--;
}
}
n = element.size();
DFS(0);
sort(ans.begin(), ans.end());
lop(i, 0, ans.size()){
cout << ans[i] << el;
}
cout << el;
}
return 0;
}