MSIL简介 - Part 2 - 使用局部变量

MSIL简介系列的第2部分,我将会探索局部变量的使用。如果没有变量,那么一个程序将会很无聊。为了解释如何使用变量,让我们写一个简单的求和程序。

在一个MSIL函数中,变量可以通过.locals指令声明.

.locals init (int32 first, int32 second, int32 result)

这个代码为当前函数声明了3个局部变量。本例中,它们恰好是 int32类型, 是System.Int32类型的别名。 init表示每个变量都需要被初始化成默认值。也可以忽略变量名,那样的话你需要通过从0开始的下标来引用它们。当然,使用变量名可以提高可读性。

在继续讲解之前,我希望确定你了解MSIL如何使用栈。当你想要给一个指令传值时,这些值需要被放到栈中。为了读取这些值,指令从栈中把它们拿出来。相似的,当调用一个函数时,你需要把引用依次推入栈中。然后函数会从栈中取出引用。为了把一个值推入栈中,用ldloc指令指示拥有那个值的变量。为了从栈中弹出一个值,使用stloc指令指示你要在哪个变量中存储这个值。记住,值是直接存储在栈中的,但是对象不是。对象的引用被存储在栈中,但对象在堆中被分配。

下一步是从用户那里获取数字。

ldstr "First number: "
call void [mscorlib]System.Console::Write(string)
call string [mscorlib]System.Console::ReadLine()
call int32 [mscorlib]System.Int32::Parse(string)
stloc first

就像是我在Part 1中提到的,ldstr指令把字符串推入栈中并调用Write函数,Write函数把变量从栈中弹出。下一个call指令调用返回string的ReadLine函数。返回的string被推入栈中,由于string已经在栈中,我们简单地调用 Int32::parse 函数把字符串弹出并推入等值的int32。注意,我为了讲解更清楚,忽略了错误处理。stloc指令会弹出栈中的值并把它存储在first局部变量中。从用户获取第二个数字的方法和这个相同,只是第二个数字的值需要被存储在 ‘second’ 局部变量中。

既然我们已经从标准输入中获取了两个值,是时候把它们相加。add指令可以达到我们的目的。

ldloc first
ldloc second
add
stloc result

add指令从栈中弹出两个值并计算它们的和。为了把局部变量的值推入栈中,我们使用了ldloc指令(load local),当add指令完成的时候,它会把结果推入栈中。接着程序使用stloc指令(set local)从栈中弹出值,并将其存储在名为 ‘result’ 的局部变量中。

最后一步是向用户展示结果。

ldstr "{0} + {1} = {2}"

ldloc first
box int32

ldloc second
box int32

ldloc result
box int32

call void [mscorlib]System.Console::WriteLine(string, object, object, object)

我们使用WriteLine重载函数。WriteLine函数的每个参数,都必须依次被推入栈中。因为数字是作为 int32值类型被存储的,我们需要为每个值装箱;否则和函数签名不匹配。

ldloc指令把每个变量推入栈中。然后为每个int32参数使用box指令。装箱会从栈中弹出值,构造一个包含值的副本的对象,然后把引用推入栈中。

下面是一个完整的程序。

.method static void main()
{
    .entrypoint
    .maxstack 4

    .locals init (int32 first,
                  int32 second,
                  int32 result)

    ldstr "First number: "
    call void [mscorlib]System.Console::Write(string)
    call string [mscorlib]System.Console::ReadLine()
    call int32 [mscorlib]System.Int32::Parse(string)
    stloc first

    ldstr "Second number: "
    call void [mscorlib]System.Console::Write(string)
    call string [mscorlib]System.Console::ReadLine()
    call int32 [mscorlib]System.Int32::Parse(string)
    stloc second

    ldloc first
    ldloc second
    add
    stloc result

    ldstr "{0} + {1} = {2}"

    ldloc first
    box int32

    ldloc second
    box int32

    ldloc result
    box int32

    call void [mscorlib]System.Console::WriteLine(string, object, object, object)   

    ret
}

这里例子还有需要注意的一点是,我指示了main函数最多使用4个栈槽。这是为了和WriteLine函数的4个参数相匹配。

内容概要:本文介绍了一种利用元启发式算法(如粒子群优化,PSO)优化线性二次调节器(LQR)控制器加权矩阵的方法,专门针对复杂的四级倒立摆系统。传统的LQR控制器设计中,加权矩阵Q的选择往往依赖于经验和试错,而这种方法难以应对高维度非线性系统的复杂性。文中详细描述了如何将控制器参数优化问题转化为多维空间搜索问题,并通过MATLAB代码展示了具体实施步骤。关键点包括:构建非线性系统的动力学模型、设计适应度函数、采用对数缩放技术避免局部最优、以及通过实验验证优化效果。结果显示,相比传统方法,PSO优化后的LQR控制器不仅提高了稳定性,还显著减少了最大控制力,同时缩短了稳定时间。 适合人群:控制系统研究人员、自动化工程专业学生、从事机器人控制或高级控制算法开发的技术人员。 使用场景及目标:适用于需要精确控制高度动态和不确定性的机械系统,特别是在处理多自由度、强耦合特性的情况下。目标是通过引入智能化的参数寻优手段,改善现有控制策略的效果,降低人为干预的需求,提高系统的鲁棒性和性能。 其他说明:文章强调了在实际应用中应注意的问题,如避免过拟合、考虑硬件限制等,并提出了未来研究方向,例如探索非对角Q矩阵的可能性。此外,还分享了一些实践经验,如如何处理高频抖动现象,以及如何结合不同类型的元启发式算法以获得更好的优化结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值