MSIL简介 - Part 2 - 使用局部变量

MSIL简介系列的第2部分,我将会探索局部变量的使用。如果没有变量,那么一个程序将会很无聊。为了解释如何使用变量,让我们写一个简单的求和程序。

在一个MSIL函数中,变量可以通过.locals指令声明.

.locals init (int32 first, int32 second, int32 result)

这个代码为当前函数声明了3个局部变量。本例中,它们恰好是 int32类型, 是System.Int32类型的别名。 init表示每个变量都需要被初始化成默认值。也可以忽略变量名,那样的话你需要通过从0开始的下标来引用它们。当然,使用变量名可以提高可读性。

在继续讲解之前,我希望确定你了解MSIL如何使用栈。当你想要给一个指令传值时,这些值需要被放到栈中。为了读取这些值,指令从栈中把它们拿出来。相似的,当调用一个函数时,你需要把引用依次推入栈中。然后函数会从栈中取出引用。为了把一个值推入栈中,用ldloc指令指示拥有那个值的变量。为了从栈中弹出一个值,使用stloc指令指示你要在哪个变量中存储这个值。记住,值是直接存储在栈中的,但是对象不是。对象的引用被存储在栈中,但对象在堆中被分配。

下一步是从用户那里获取数字。

ldstr "First number: "
call void [mscorlib]System.Console::Write(string)
call string [mscorlib]System.Console::ReadLine()
call int32 [mscorlib]System.Int32::Parse(string)
stloc first

就像是我在Part 1中提到的,ldstr指令把字符串推入栈中并调用Write函数,Write函数把变量从栈中弹出。下一个call指令调用返回string的ReadLine函数。返回的string被推入栈中,由于string已经在栈中,我们简单地调用 Int32::parse 函数把字符串弹出并推入等值的int32。注意,我为了讲解更清楚,忽略了错误处理。stloc指令会弹出栈中的值并把它存储在first局部变量中。从用户获取第二个数字的方法和这个相同,只是第二个数字的值需要被存储在 ‘second’ 局部变量中。

既然我们已经从标准输入中获取了两个值,是时候把它们相加。add指令可以达到我们的目的。

ldloc first
ldloc second
add
stloc result

add指令从栈中弹出两个值并计算它们的和。为了把局部变量的值推入栈中,我们使用了ldloc指令(load local),当add指令完成的时候,它会把结果推入栈中。接着程序使用stloc指令(set local)从栈中弹出值,并将其存储在名为 ‘result’ 的局部变量中。

最后一步是向用户展示结果。

ldstr "{0} + {1} = {2}"

ldloc first
box int32

ldloc second
box int32

ldloc result
box int32

call void [mscorlib]System.Console::WriteLine(string, object, object, object)

我们使用WriteLine重载函数。WriteLine函数的每个参数,都必须依次被推入栈中。因为数字是作为 int32值类型被存储的,我们需要为每个值装箱;否则和函数签名不匹配。

ldloc指令把每个变量推入栈中。然后为每个int32参数使用box指令。装箱会从栈中弹出值,构造一个包含值的副本的对象,然后把引用推入栈中。

下面是一个完整的程序。

.method static void main()
{
    .entrypoint
    .maxstack 4

    .locals init (int32 first,
                  int32 second,
                  int32 result)

    ldstr "First number: "
    call void [mscorlib]System.Console::Write(string)
    call string [mscorlib]System.Console::ReadLine()
    call int32 [mscorlib]System.Int32::Parse(string)
    stloc first

    ldstr "Second number: "
    call void [mscorlib]System.Console::Write(string)
    call string [mscorlib]System.Console::ReadLine()
    call int32 [mscorlib]System.Int32::Parse(string)
    stloc second

    ldloc first
    ldloc second
    add
    stloc result

    ldstr "{0} + {1} = {2}"

    ldloc first
    box int32

    ldloc second
    box int32

    ldloc result
    box int32

    call void [mscorlib]System.Console::WriteLine(string, object, object, object)   

    ret
}

这里例子还有需要注意的一点是,我指示了main函数最多使用4个栈槽。这是为了和WriteLine函数的4个参数相匹配。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值