一、使用更快的数学计算的库,如numpy
使用NumPy进行向量化计算,这通常比纯Python循环快很多。
1.1numpy为什么快:
- 内部优化:NumPy的内部实现使用了高效的、针对数组操作优化的代码,通常是用C或Fortran编写的。这比Python的内置类型和操作要快得多,因为它减少了解释器的开销,并利用了低层次语言的效率。
- 向量化操作:NumPy允许进行向量化计算,这意味着您可以对整个数组进行操作,而无需显式编写循环。向量化操作减少了Python循环的开销,并允许NumPy在底层利用更有效的算法和硬件加速(如SIMD指令)。
- 减少内存访问次数:在常规的Python循环中,每次循环迭代都涉及到多次内存访问。而NumPy的向量化操作可以减少内存访问次数,因为它处理的是整个数组块,这在内存使用和缓存效率上通常比逐个元素处理更优。
- 广播机制:NumPy的广播机制允许不同形状的数组进行数学运算。在计算距离矩阵的过程中,广播允许我们不用显式地编写嵌套循环,而是利用更高效的数组操作来完成同样的任务。
1.2示例-计算某三维空间中各个三角形之间的距离:
def calculate_distance_matrix(centers):
num_triangles = centers.shape[0]
# centers.shape[0] 获取centers数组的第一维大小,即三角形的数量。
diff =