Hadoop - HDFS

Hadoop分布式文件系统(HDFS)专为处理TB甚至GB级数据量而设计,具备高容错性和成本效益。然而,其在低延迟数据访问和大量小文件存储方面存在局限。本文详细介绍了HDFS的工作机制、优点与缺点,以及如何优化其性能。
摘要由CSDN通过智能技术生成

HDFS  Hadoop Distributed File System  Hadoop分布式文件系统(HDFS)

HDFS的优点

适合大数据处理:可处理TB甚至GB级数据量、10K+节点数。

高容错性:数据保存多个副本,且副本丢失后自动恢复。

可构建在廉价的机器上

HDFS的缺点

不适合低延迟数据访问:要处理的数据量非常大,处理需要一定的时间。

无法高效存储大量小文件

大量小文件会占用HDFS过多内存。

当出现大量小文件时,应压缩,整体作为一个文件进行存储。

不支持多用户写入和任意修改文件





Client  向NameNode发送访问请求:读写改删

NameNode (NN)  处理Client请求,并把请求转发给DataNode,然后由Client访问DataNode。

DataNode

DataNode将数据存放在磁盘上,DataNode存储的数据是数据块。

相同颜色的数据块是同一个数据在不同DataNode上的副本。

Bolck

数据块默认大小是64MB

文件都是先被分为块,再分到不同的节点上。

每一个数据块默认有3个副本

数据块大小和副本个数可以在Client上传文件时设置,上传成功后副本数可改变,数据块大小不可改变。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值