分治回溯算法----棋盘覆盖问题

本文探讨了棋盘覆盖问题,这是一个涉及2^k×2^k棋盘的挑战,其中有一个特殊的方格。问题要求使用四种不同形状的L型骨牌,不重叠地覆盖所有非特殊方格。通过示例展示了4*4棋盘的覆盖情况和骨牌形状,并解释了棋盘填充的实现过程。
摘要由CSDN通过智能技术生成

棋盘覆盖问题:在一个2^k×2^k(k≥0)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格。显然,特殊方格在棋盘中可能出现的位置有4^k种,因而有4^k种不同的棋盘。棋盘覆盖问题要求用4种不同形状的L型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。如图:以4*4的棋盘为例:

四种不同形状的L型骨牌:

骨牌覆盖的结果:

 

棋盘填充的实现:

//分治回溯 分治的应用 之 棋盘覆盖问题
/*
利用分治算法 将棋盘分成三个子棋盘
首先要先判断特殊方格在哪个子棋盘中
若特殊方格在左上子棋盘中 就继续向下递归 将子棋盘再分为四个子棋盘即可
若左上子棋盘中没有特殊方格 我们就将左上子棋盘中的右下方的格子 当成一个特殊方格
再继续向下递归 将子棋盘再分为四个子棋盘 直到棋盘被全部覆为止
若右上子棋盘中没有特殊方格 我们就将右上子棋盘中的左下方的格子 当成一个特殊方格
再继续向下递归 将子棋盘再分为四个子棋盘 直到棋盘被全部覆为止
若左下子棋盘中没有特殊方格 我们就将下上子棋盘中的右上方的格子 当成一个特殊方格
再
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值