游戏在一个类似于围棋棋盘一样的二维方格网中进行。设想每个方格中都可放置一个生命细胞,生命细胞只有两种状态:“生”或“死”。游戏开始时, 每个细胞可以随机地(或给定地)被设定为“生”或“死”之一的某个状态, 再根据某种演化规则(生存定律)计算下一代每个细胞的状态。
“生命游戏”的演化规则:
①生存:对一个活的元胞,如果它的邻居中有2个或3个元胞是活的,那么该元胞将继续生存;
②死亡:对于一个活的元胞,如果它的邻居中有4个或4个以上的元胞是活的,该元胞死亡;
如果它的邻居中只有1个或没有活的元胞,那么死亡;
③繁殖:对1个空的元胞,如果它的邻居中有3个活的,那么该元胞将被激活成为活的元胞。
请编写程序实现该游戏,并观察模式,至少找到5种新模式,给出每种模式的迭代演化过程。
“生命游戏”是一种细胞自动机模型,由数学家约翰·康威(John Conway)在1970年提出。它通过简单的规则模拟了细胞的生存、死亡和繁殖,从而展示了复杂的动态行为。该模型不仅在理论计算机科学中有广泛应用,也在数学、物理和生物学等领域中具有重要意义。
目录
1.问题分析
因为技术力有限,所以可以采取比较笨的办法,在实验里大范围大数量随机生成,尽量让他们互不干扰,然后在数个周期之后还存在演化的就是我们要找的了,过程中这些可能会相互干扰,所以可以进行观察,把那些未受干扰时稳定的找出,然后就可以把这些仍然正在演化的提取出,进行进一步验证。
2.模型原理
基本概念
“生命游戏”是一个零玩家游戏,通过简单的规则来模拟细胞的生长、死亡和繁殖。游戏在一个二维网格上进行,每个网格点代表一个细胞,细胞有两个状态:“生”或“死”。
规则
- 生存:一个活细胞如果周围有2个或3个活细胞,它将继续生存。
- 死亡:一个活细胞如果周围有少于2个或多于3个活细胞,它将死亡。
- 繁殖:一个死细胞如果周围恰好有3个活细胞,它将变成活细胞。
模型原理
- 初始化:棋盘被设置为一个大小为 s×ss \times ss×s 的二维网格,每个网格点(细胞)初始状态为“生”或“死”。状态初始化通常是随机的,以一定的概率使细胞为“生”状态。
- 状态更新:每个细胞的状态在每一代更新一次。更新时,检查其8个邻居的状态,根据上述规则决定细胞的下一个状态。
- 可视化:更新后的棋盘状态通过图像进行显示,使得演化过程可以直观地观察到。
模型运行步骤
- 初始化棋盘:创建一个空的棋盘网格,并随机设置细胞的初始状态。
- 更新细胞状态:按照规则遍历棋盘中的每一个细胞,计算其邻居的状态,决定其在下一代的状态。
- 记录和可视化:记录每一代的状态,并实时显示棋盘图像,以观察细胞的演化过程。
- 稳定性分析:观察并分析哪些细胞区域在经过多个周期后保持稳定,提取这些稳定的模式进行进一步研究。
稳定模式
稳定模式是指在经过一定数量的迭代后,棋盘上的状态不再发生变化。通过观察这些模式,可以了解细胞如何在不同初始条件下演化成各种结构,包括静止的、周期性变化的、和其他复杂的结构。
这种模型的魅力在于其简单的规则能够产生复杂而富有规律的行为,展示了从简单的起点到复杂结构的演化过程。
3.相关函数命令
矩阵索引
data(x, y)
- 这个表达式指的是
data
矩阵中第x
行第y
列的元素。例如,如果data
是一个5x4
的矩阵,data(2, 3)
将返回矩阵中第2行第3列的元素。
data(:, y)
- 这个表达式指的是
data
矩阵中第y
列的所有行的值组成的一个列向量。例如,如果data
是一个5x4
的矩阵,data(:, 3)
将返回一个5x1的列向量,其中包含第3列的所有值。
data(:, [y1:y2])
- 这个表达式指的是
data
矩阵中从第y1
列到第y2
列的所有行的值组成的一个子矩阵。例如,如果data
是一个5x6
的矩阵,data(:, [2:4])
将返回一个5x3的子矩阵,其中包含第2列到第4列的所有行的值。
zeros
函数
X = zeros
- 如果不提供参数,
zeros
函数返回一个标量0。比如X = zeros
会返回0
。
X = zeros(n)
- 如果提供一个标量
n
,zeros
函数返回一个n×n
的全零矩阵。例如,zeros(3)
将返回一个3x3的全零矩阵:
X = zeros(3);
% X =
% 0 0 0
% 0 0 0
% 0 0 0
X = zeros(sz1, ..., szN)
- 如果提供多个维度,
zeros
函数返回一个具有这些维度的全零数组。例如,zeros(2, 3)
将返回一个2x3的全零矩阵:
X = zeros(2, 3);
% X =
% 0 0 0
% 0 0 0
X = zeros(sz)
- 如果
sz
是一个向量,zeros
函数返回一个具有该向量指定大小的全零数组。例如,zeros([2 3])
也会返回一个2x3的全零矩阵:
X = zeros([2 3]);
% X =
% 0 0 0
% 0 0 0
X = zeros(___, typename)
- 如果提供了
typename
,zeros
函数会返回一个具有指定数据类型的全零数组。例如,zeros(2, 'int8')
返回一个2x2的全零矩阵,数据类型为8位整数:
X = zeros(2, 'int8');
% X =
% 0 0
% 0 0
X = zeros(___, 'like', p)
- 如果提供了一个示例数组
p
,zeros
函数会返回一个与p
具有相同数据类型和其他属性的全零数组。例如,如果p
是一个single
类型的数组,zeros(2, 'like', p)
将返回一个single
类型的全零数组:
p = single([1 2; 3 4]);
X = zeros(2, 'like', p);
% X =
% 0 0
% 0 0
% (X的类型是single)
条件语句
if expression, statements, end
- 在MATLAB中,
if
语句用于根据表达式的真假来控制程序的执行。如果expression
的值是非空且所有元素都为非零,则条件为真,statements
部分将被执行。
elseif
和 else
elseif
和else
是可选的部分。如果if
的条件不满足,可以通过elseif
检查其他条件,或者通过else
在所有条件都不满足时执行某些操作。-
x = 5; if x < 0 disp('x is negative'); elseif x == 0 disp('x is zero'); else disp('x is positive'); end
在这个示例中,根据
x
的值,程序会打印出“x is positive”,因为x
的值是5,满足else
部分的条件。
4.算法代码
为了实现想法并在MATLAB中探索生命游戏的演化模式,我们可以采用如下步骤:
-
扩展棋盘
为确保实验中不同细胞之间的干扰尽可能小,我们可以增加棋盘的大小。这样可以使不同区域之间的干扰降到最低。
- 随机初始化
生成大量随机的初始状态,并记录每个状态的演化过程。
- 观察与分析
在模拟一定数量的周期后,记录哪些区域的状态仍在变化,并将这些区域提取出来进行进一步验证。
- 提取稳定模式
对于那些长时间内状态没有变化的区域,分析其演化过程并尝试提取和总结出稳定的模式。
以下是一个实现这些步骤的MATLAB代码:
% 参数设置
s = 200; % 棋盘大小(更大尺寸以减少干扰)
w = 8; % 每一个元包的像素宽度
num_iterations = 1000; % 总迭代次数
initial_density = 0.4; % 初始化细胞的生存概率
threshold = 0.01; % 稳定性阈值,用于识别稳定模式
% 初始化棋盘和状态
board = zeros(w*s, s*w); % 棋盘图片
state = rand(s, s) < initial_density; % 随机初始化
% 准备记录演化状态
history = zeros(s, s, num_iterations);
history(:,:,1) = state;
% 主循环
for k = 1:num_iterations
% 更新状态
newState = state;
for i = 1:s
for j = 1:s
% 计算邻居着活着的个数
cnt = sum([
state(max(i-1,1), max(j-1,1)), state(max(i-1,1), j), state(max(i-1,1), min(j+1,s)), ...
state(i, max(j-1,1)), state(i, min(j+1,s)), ...
state(min(i+1,s), max(j-1,1)), state(min(i+1,s), j), state(min(i+1,s), min(j+1,s))
]);
% 更新状态
if state(i,j) == 0 && cnt == 3
newState(i,j) = 1;
elseif state(i,j) == 1 && (cnt < 2 || cnt > 3)
newState(i,j) = 0;
end
end
end
% 记录当前状态
history(:,:,k) = newState;
% 更新状态
state = newState;
% 更新棋盘图像
board((1:s)*w, (1:s)*w) = state * 255;
imshow(board);
pause(0.1);
end
% 分析稳定模式
for i = 1:s
for j = 1:s
% 检查当前区域的状态稳定性
stable = true;
for k = 2:num_iterations
if norm(history(i,j,k) - history(i,j,k-1)) > threshold
stable = false;
break;
end
end
if stable
fprintf('区域 (%d, %d) 稳定\n', i, j);
% 可以进一步提取并分析稳定区域
end
end
end
-
参数设置:
s
:棋盘的尺寸,设置得更大以减少不同区域之间的干扰。w
:每个细胞的像素宽度,用于可视化。num_iterations
:模拟的总周期数。initial_density
:初始化时细胞的生存概率。threshold
:用于判断细胞是否稳定的阈值。
-
初始化:
state
:根据给定的生存概率随机初始化细胞状态。
-
主循环:
- 更新每个细胞的状态。
- 记录每一代的状态。
- 使用
imshow
实时显示棋盘状态。
-
稳定模式分析:
- 检查每个细胞区域的状态在一定周期后是否稳定。
- 如果稳定,输出该区域的位置,并进行进一步分析。
5.结果展示
6.总结
通过本项目,我们成功实现了“生命游戏”的基本规则,并对细胞的演化过程进行了模拟和分析。结果表明,即使是简单的规则,也能生成复杂的行为模式。这不仅加深了对细胞自动机的理解,也为进一步研究和应用提供了基础。
未来的工作可以包括:
- 优化算法:提升程序的计算效率和可扩展性。
- 扩展规则:尝试实现更复杂的生命游戏规则和变种。
- 应用探索:将“生命游戏”模型应用到其他领域,如生物模拟和复杂系统研究。
通过对“生命游戏”的深入研究,我们可以更好地理解复杂系统的行为,探索更多的应用领域。