关于生命游戏问题的浅析(Matlab数学建模)

游戏在一个类似于围棋棋盘一样的二维方格网中进行。设想每个方格中都可放置一个生命细胞,生命细胞只有两种状态:“生”或“死”。游戏开始时, 每个细胞可以随机地(或给定地)被设定为“生”或“死”之一的某个状态, 再根据某种演化规则(生存定律)计算下一代每个细胞的状态。

“生命游戏”的演化规则:

   ①生存:对一个活的元胞,如果它的邻居中有2个或3个元胞是活的,那么该元胞将继续生存;

   ②死亡:对于一个活的元胞,如果它的邻居中有4个或4个以上的元胞是活的,该元胞死亡;

                如果它的邻居中只有1个或没有活的元胞,那么死亡;

   ③繁殖:对1个空的元胞,如果它的邻居中有3个活的,那么该元胞将被激活成为活的元胞。

请编写程序实现该游戏,并观察模式,至少找到5种新模式,给出每种模式的迭代演化过程。


“生命游戏”是一种细胞自动机模型,由数学家约翰·康威(John Conway)在1970年提出。它通过简单的规则模拟了细胞的生存、死亡和繁殖,从而展示了复杂的动态行为。该模型不仅在理论计算机科学中有广泛应用,也在数学、物理和生物学等领域中具有重要意义。


目录

1.问题分析

2.模型原理

3.相关函数命令

矩阵索引

zeros 函数

条件语句

 4.算法代码

 5.结果展示

6.总结


 

1.问题分析

因为技术力有限,所以可以采取比较笨的办法,在实验里大范围大数量随机生成,尽量让他们互不干扰,然后在数个周期之后还存在演化的就是我们要找的了,过程中这些可能会相互干扰,所以可以进行观察,把那些未受干扰时稳定的找出,然后就可以把这些仍然正在演化的提取出,进行进一步验证。

2.模型原理

基本概念

“生命游戏”是一个零玩家游戏,通过简单的规则来模拟细胞的生长、死亡和繁殖。游戏在一个二维网格上进行,每个网格点代表一个细胞,细胞有两个状态:“生”或“死”。

规则

  • 生存:一个活细胞如果周围有2个或3个活细胞,它将继续生存。
  • 死亡:一个活细胞如果周围有少于2个或多于3个活细胞,它将死亡。
  • 繁殖:一个死细胞如果周围恰好有3个活细胞,它将变成活细胞。

模型原理

  • 初始化:棋盘被设置为一个大小为 s×ss \times ss×s 的二维网格,每个网格点(细胞)初始状态为“生”或“死”。状态初始化通常是随机的,以一定的概率使细胞为“生”状态。
  • 状态更新:每个细胞的状态在每一代更新一次。更新时,检查其8个邻居的状态,根据上述规则决定细胞的下一个状态。
  • 可视化:更新后的棋盘状态通过图像进行显示,使得演化过程可以直观地观察到。

模型运行步骤

  1. 初始化棋盘:创建一个空的棋盘网格,并随机设置细胞的初始状态。
  2. 更新细胞状态:按照规则遍历棋盘中的每一个细胞,计算其邻居的状态,决定其在下一代的状态。
  3. 记录和可视化:记录每一代的状态,并实时显示棋盘图像,以观察细胞的演化过程。
  4. 稳定性分析:观察并分析哪些细胞区域在经过多个周期后保持稳定,提取这些稳定的模式进行进一步研究。

稳定模式

稳定模式是指在经过一定数量的迭代后,棋盘上的状态不再发生变化。通过观察这些模式,可以了解细胞如何在不同初始条件下演化成各种结构,包括静止的、周期性变化的、和其他复杂的结构。

这种模型的魅力在于其简单的规则能够产生复杂而富有规律的行为,展示了从简单的起点到复杂结构的演化过程。

3.相关函数命令

矩阵索引

data(x, y)

  • 这个表达式指的是data矩阵中第x行第y列的元素。例如,如果data是一个5x4的矩阵,data(2, 3)将返回矩阵中第2行第3列的元素。

data(:, y)

  • 这个表达式指的是data矩阵中第y列的所有行的值组成的一个列向量。例如,如果data是一个5x4的矩阵,data(:, 3)将返回一个5x1的列向量,其中包含第3列的所有值。

data(:, [y1:y2])

  • 这个表达式指的是data矩阵中从第y1列到第y2列的所有行的值组成的一个子矩阵。例如,如果data是一个5x6的矩阵,data(:, [2:4])将返回一个5x3的子矩阵,其中包含第2列到第4列的所有行的值。

zeros 函数

X = zeros

  • 如果不提供参数,zeros函数返回一个标量0。比如 X = zeros 会返回0

X = zeros(n)

  • 如果提供一个标量nzeros函数返回一个n×n的全零矩阵。例如,zeros(3) 将返回一个3x3的全零矩阵:
X = zeros(3);
% X =
%      0     0     0
%      0     0     0
%      0     0     0 

X = zeros(sz1, ..., szN)

  • 如果提供多个维度,zeros函数返回一个具有这些维度的全零数组。例如,zeros(2, 3) 将返回一个2x3的全零矩阵:
X = zeros(2, 3);
% X =
%      0     0     0
%      0     0     0

X = zeros(sz)

  • 如果sz是一个向量,zeros函数返回一个具有该向量指定大小的全零数组。例如,zeros([2 3]) 也会返回一个2x3的全零矩阵:
X = zeros([2 3]);
% X =
%      0     0     0
%      0     0     0

X = zeros(___, typename)

  • 如果提供了typenamezeros函数会返回一个具有指定数据类型的全零数组。例如,zeros(2, 'int8') 返回一个2x2的全零矩阵,数据类型为8位整数:
X = zeros(2, 'int8');
% X =
%      0     0
%      0     0

X = zeros(___, 'like', p)

  • 如果提供了一个示例数组pzeros函数会返回一个与p具有相同数据类型和其他属性的全零数组。例如,如果p是一个single类型的数组,zeros(2, 'like', p) 将返回一个single类型的全零数组:
p = single([1 2; 3 4]);
X = zeros(2, 'like', p);
% X =
%      0     0
%      0     0
% (X的类型是single)

条件语句

if expression, statements, end

  • 在MATLAB中,if语句用于根据表达式的真假来控制程序的执行。如果expression的值是非空且所有元素都为非零,则条件为真,statements部分将被执行。

elseifelse

  • elseifelse 是可选的部分。如果if的条件不满足,可以通过elseif检查其他条件,或者通过else在所有条件都不满足时执行某些操作。
  • x = 5;
    
    if x < 0
        disp('x is negative');
    elseif x == 0
        disp('x is zero');
    else
        disp('x is positive');
    end
    

    在这个示例中,根据x的值,程序会打印出“x is positive”,因为x的值是5,满足else部分的条件。

 4.算法代码

为了实现想法并在MATLAB中探索生命游戏的演化模式,我们可以采用如下步骤:

  • 扩展棋盘

为确保实验中不同细胞之间的干扰尽可能小,我们可以增加棋盘的大小。这样可以使不同区域之间的干扰降到最低。

  • 随机初始化

生成大量随机的初始状态,并记录每个状态的演化过程。

  • 观察与分析

在模拟一定数量的周期后,记录哪些区域的状态仍在变化,并将这些区域提取出来进行进一步验证。

  • 提取稳定模式

对于那些长时间内状态没有变化的区域,分析其演化过程并尝试提取和总结出稳定的模式。

以下是一个实现这些步骤的MATLAB代码:

% 参数设置
s = 200; % 棋盘大小(更大尺寸以减少干扰)
w = 8; % 每一个元包的像素宽度
num_iterations = 1000; % 总迭代次数
initial_density = 0.4; % 初始化细胞的生存概率
threshold = 0.01; % 稳定性阈值,用于识别稳定模式

% 初始化棋盘和状态
board = zeros(w*s, s*w); % 棋盘图片
state = rand(s, s) < initial_density; % 随机初始化

% 准备记录演化状态
history = zeros(s, s, num_iterations);
history(:,:,1) = state;

% 主循环
for k = 1:num_iterations
    % 更新状态
    newState = state;
    for i = 1:s
        for j = 1:s
            % 计算邻居着活着的个数
            cnt = sum([
                state(max(i-1,1), max(j-1,1)), state(max(i-1,1), j), state(max(i-1,1), min(j+1,s)), ...
                state(i, max(j-1,1)),                               state(i, min(j+1,s)), ...
                state(min(i+1,s), max(j-1,1)), state(min(i+1,s), j), state(min(i+1,s), min(j+1,s))
            ]);
            
            % 更新状态
            if state(i,j) == 0 && cnt == 3
                newState(i,j) = 1;
            elseif state(i,j) == 1 && (cnt < 2 || cnt > 3)
                newState(i,j) = 0;
            end
        end
    end
    
    % 记录当前状态
    history(:,:,k) = newState;
    
    % 更新状态
    state = newState;
    
    % 更新棋盘图像
    board((1:s)*w, (1:s)*w) = state * 255;
    imshow(board);
    pause(0.1);
end

% 分析稳定模式
for i = 1:s
    for j = 1:s
        % 检查当前区域的状态稳定性
        stable = true;
        for k = 2:num_iterations
            if norm(history(i,j,k) - history(i,j,k-1)) > threshold
                stable = false;
                break;
            end
        end
        
        if stable
            fprintf('区域 (%d, %d) 稳定\n', i, j);
            % 可以进一步提取并分析稳定区域
        end
    end
end
  • 参数设置

    • s:棋盘的尺寸,设置得更大以减少不同区域之间的干扰。
    • w:每个细胞的像素宽度,用于可视化。
    • num_iterations:模拟的总周期数。
    • initial_density:初始化时细胞的生存概率。
    • threshold:用于判断细胞是否稳定的阈值。
  • 初始化

    • state:根据给定的生存概率随机初始化细胞状态。
  • 主循环

    • 更新每个细胞的状态。
    • 记录每一代的状态。
    • 使用imshow实时显示棋盘状态。
  • 稳定模式分析

    • 检查每个细胞区域的状态在一定周期后是否稳定。
    • 如果稳定,输出该区域的位置,并进行进一步分析。

 5.结果展示

 

6.总结

通过本项目,我们成功实现了“生命游戏”的基本规则,并对细胞的演化过程进行了模拟和分析。结果表明,即使是简单的规则,也能生成复杂的行为模式。这不仅加深了对细胞自动机的理解,也为进一步研究和应用提供了基础。

未来的工作可以包括:

  • 优化算法:提升程序的计算效率和可扩展性。
  • 扩展规则:尝试实现更复杂的生命游戏规则和变种。
  • 应用探索:将“生命游戏”模型应用到其他领域,如生物模拟和复杂系统研究。

通过对“生命游戏”的深入研究,我们可以更好地理解复杂系统的行为,探索更多的应用领域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Etherious_Young

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值