随感

2016年12月15日。

12月18日模电考试。

12月25日交Java课程设计作业

12月27日操作系统考试。

1月7日托福。


最近过着自以为是大学以来学习最刻苦的一段日子,当然,还会继续过下去。但是不知道还能不能保持着那份激情。


其实现在不应该不学习,只是最近过得有点落魄,仿佛提前感受到了参加工作以后漂泊异乡,一事无成的情景。


刚刚,汇编作业验收。两个程序,一个多重循环,改了两次,从使用dx寄存器缓存cx的两重循环,到堆栈实现的多重循环,到根据c语言反汇编出来的程序改写的没有loop,自己实现堆栈的多重循环。给老师验收的时候,却什么都没有说出来,紧张得指屏幕上得数据的时候手都在抖。不禁让我想起大一英语课期末的presentation的时候,脑子一片空白,声音在抖,自己也不知道在说什么。怎么会这样。我可以预见到以后工作的时候,不会邀功,只会干活的我,遥遥望不到前路。


信号处理,我花了一周时间做大作业,有点空闲时间就调试LabVIEW的程序,其中遇到了很多情况,比如组件的安装,程序新老版本的兼容,都是正常轨迹之外的状况,让我焦头烂额,碌碌却又无为。我准备考试不可谓不用心,临近考试的周末两天,除了吃饭,都没有出过门。但是结果真的让我很难接受。


大一的时候,我的高数第一学期就考了六十多分,第二学期努努力,也只有七十多分。从此我对成绩就不是很在意了,不在意,只能是出成绩了不去想,备考还是会尽力。但当我拼命准备,想要为出国的道路奠基的时候,第一门成绩就是一盆冷水,仿佛在嘲笑我,嘲笑我的努力感动了自己,却没有任何成效,让我还是乖乖和别人一样过着考研找工作的生活吧。


刚刚回来,不得不安慰一下自己,在盥洗室,对着镜子,对自己说,你这么帅,不能在学习上也比别人厉害了,总得给别人留点活路吧。有时候,生活总是需要厚着脸皮去过,这样,被生活痛揍的时候,疼痛会少一点,不去在意,继续前行。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值