简单题意:整体来讲,就是在一个二维平面内走格子,规则是:一次只能移动一次,并且不能往回走,同时走过的格子不能再走第二遍,求走n步不同的解决方案!
解题思路:f[n]表示走n步的方案数,x[n]表示向下走的方案数,z[n]表示向左右走的方案数;所以 f[n]=x[n]+z[n],x[n]=x[n-1]+z[n-1];z[n]=x[n-1]*2+z[n-1]
所以f[n]=2*f[n-1]+x[n-1]===>f[n]=2*f[n-1]+f[n-2];
代码如下:
#include <iostream>
using namespace std;
int main()
{
long long dp[25];
dp[1]=3;
dp[2]=7;
int N,m,flag=2;
cin>>N;
while(N--)
{
cin>>m;
if(m<=flag)
cout<<dp[m]<<endl;
else
{
for(int i=flag+1;i<=m;++i)
dp[i]=2*dp[i-1]+dp[i-2];
flag=m;
cout<<dp[m]<<endl;
}
}
return 0;
}