3-基本数据结构


3.基本数据结构

3.1 目标

  • 理解抽象数据类型的 栈,队列,deque 和列表。
  • 能够使用 Python 列表实现 ADT 堆栈,队列和 deque。
  • 了解基本线性数据结构实现的性能。 了解前缀,中缀和后缀表达式格式。
  • 使用栈来实现后缀表达式。
  • 使用栈将表达式从中缀转换为后缀。
  • 使用队列进行基本时序仿真。
  • 能够识别问题中栈,队列和 deques 数据结构的适当使用。
  • 能够使用节点和引用将抽象数据类型列表实现为链表。
  • 能够比较我们的链表实现与 Python 的列表实现的性能。

前置基础 : 数据, 数据元素, 数据项 和 数据对象

数据:生活中充满了各种数据,其实数据不光是我们常见的文本字符,也可以是图像,声音,视频等等.
数据元素:是组成数据的、有一定意义的基本单位,在计算机中通 常作为整体处理。也被称为记录。

比如,在人类中,什么是数据元素呀?当然是人了。
畜类呢?哈,牛、马、羊、鸡、猪、狗等动物当然就是禽类的数据 元素。

数据项:一个数据元素可以由若干个数据项组成。数据项是数据不可分割的最小单位.

比如人这样的数据元素,可以有眼、耳、鼻、嘴、手、脚这些数据 项,也可以有姓名、年龄、性别、出生地址、联系电话等数据项, 具体有哪些数据项,要视你做的系统来决定。

数据对象:数据对象:是性质相同的数据元素的集合,是数据的子集。

什么叫性质相同呢,是指数据元素具有相同数量和类型的数据项, 比如,还是刚才的例子,人都有姓名、生日、性别等相同的数据 项。
既然数据对象是数据的子集,在实际应用中,处理的数据元素通常 具有相同性质,在不产生混淆的情况下,我们都将数据对象简称为 数据。

数据
数据对象
数据元素数据元素数据元素
数据项数据项数据项

3.2 什么是线性数据结构

我们从四个简单但重要的概念开始研究数据结构。

栈,队列,deques, 列表 是一类数据的容 器,它们数据项之间的顺序由添加或删除的顺序决定。
一旦一个 数据项 被添加,它相对于前 后元素一直保持该位置不变。诸如此类的数据结构被称为线性数据结构

线性数据结构有两端,有时被称为左右,某些情况被称为前后。你也可以称为顶部和底部, 名字都不重要。

将两个线性数据结构区分开的方法是添加和移除项的方式,特别是添加和移 除项的位置。例如一些结构允许从一端添加项,另一些允许从另一端移除项。

(排队,一个拉一个,有限长的队伍.插队和离队的方式不一样.有的从尾插尾离,有的尾插头离)


3.3 什么是栈

(有时称为“后进先出(LIFO)栈): 是一个项的有序集合,其中添加移除新项总发生在同一端。这一 端通常称为“顶部”。与顶部对应的端称为“底部”。

生活中的一摞图书,盘子等都可以看作栈.

想想这种反转的属性,你可以想到使用计算机的时候所碰到的例子。
例如,每个 web 浏览器 都有一个返回按钮。当你浏览网页时,这些网页被放置在一个栈中(实际是网页的网址)。 你现在查看的网页在顶部,你第一个查看的网页在底部。如果按‘返回’按钮,将按相反的顺序 浏览刚才的页面。

在这里插入图片描述

3.4 栈的抽象数据类型

栈的抽象数据类型由以下结构和操作定义。如上所述,栈被构造为项的有序集合,其中项被 添加和从末端移除的位置称为“顶部”。栈是有序的 LIFO 。栈操作如下:

  • Stack() 创建一个空的新栈。 它不需要参数,并返回一个空栈。
  • push(item)将一个新项添加到栈的顶部。它需要 item 做参数并不返回任何内容。
  • pop() 从栈中删除顶部项。它不需要参数并返回 item 。栈被修改。
  • peek() 从栈返回顶部项,但不会删除它。不需要参数。 不修改栈。
  • isEmpty() 测试栈是否为空。不需要参数,并返回布尔值。
  • size() 返回栈中的 item 数量。不需要参数,并返回一个整数。

例如,s 是已经创建的空栈,Table1 展示了栈操作序列的结果。栈中,顶部项列在最右边。

栈操作栈内容返回值
s.isEmpty[ ]True
s.push(4)[4]
s.push(‘dog’)[4,“dog”]
s.peek()[4,“dog”]‘dog’
s.push(True)[4,“dog”,True]
s.size()[4,“dog”,True]3
s.isEmpty[4,“dog”,True]False
s.push(8,.4)[4,“dog”,True,8.4]
s.pop()[4,“dog”,True]8.4
s.pop()[4,“dog”]True
s.size()[4,“dog”]2

3.5 python实现栈

我们通过创建新类的方式实现一个新的数据结构:栈(Stack),并利用Python内置的列表类型来实现.

class Stack(object):
    def __init__(self):
        self.items = []

    def isEmpty(self):
        return self.items == []

    def push(self, item):
        self.items.append(item)

    def pop(self):
        return self.items.pop()

    def peek(self):
        return self.items[-1]

    def size(self):
        return len(self.items)

s = Stack()
print(s.isEmpty())
s.push(4)
s.push('dog')
print(s.peek())
s.push(True)
print(s.size())
print(s.isEmpty())
s.push(8.4)
print(s.pop())
print(s.pop())
print(s.size())

Note pythonds 模块包含本书中讨论的所有数据结构的实现。它根据以下部分构造:基本数据类型,树和图。
该模块可以从 : https://pypi.org/project/pythonds3/ 下载。

3.6 简单括号匹配

括号必须以匹配的方式出现。括号匹配意味着每个开始符号具有相应的结 束符号,并且括号能被正确嵌套。考虑下面正确匹配的括号字符串:

( ( )( )( )( ) )
( ( ( ( ) ) ) )
( ( ) ( ( ( ) ) ( ) ) )

对比那些不匹配的括号:

( ( ( ( ( ( ( ) )
( ) ) )
( ( )( ) ( ( )

思路:
----利用来实现,首先对整个括号字符串进行遍历,如果是"(",就压栈.如果是")"就出栈,
当然,如果栈空的时候出栈,说明 )( 左边或者是 )的数量高于(,匹配失败,将标志balance位置为假.
当全部遍历完成时,整个栈应该是空的.而且blance标志为真.

from pythonds3 import Stack


def main():
    stack = Stack()
    balanced = True
    '''交互'''
    stack_str = input("请输入要判断的括号:")
    '''循环判断'''
    i = 0
    while i<len(stack_str) and balanced:
        if stack_str[i] == '(':
            stack.push(stack_str[i])
        else:
            if stack.is_empty():
                balanced = False
            else:
                stack.pop()
        i = i + 1

    if balanced and stack.is_empty():
        print("括号匹配成功!")
    else:
        print("括号匹配失败!")

运行结果:
在这里插入图片描述


3.7 符号匹配

在 Python 中,方括号 [ 和 ] 用于列表, 花括号 { 和 } 用于字典。括号 ( 和 ) 用于元祖和算术表达式。只要每个符号都能保持 自己的开始和结束关系,就可以混合符号。符号字符串如:

{ { ( [ ] [ ] ) } ( ) }
[ [ { { ( ( ) ) } } ] ]
[ ] [ ] [ ] ( ) { }

这些被恰当的匹配了,因为不仅每个开始符号都有对应的结束符号,而且符号的类型也匹 配。
相反这些字符串没法匹配:

( [ ) ]
( ( ( ) ] ) )
[ { ( ) ]

其实我们只需要对刚才的代码进行一个小小的扩展即可实现:

思路: 整体逻辑不变,加入判断函数.

  • 当我们执行迭代到某一个右括号时候,出栈.
  • 这时如果栈顶的元素(一个左括号)和这个右括号不是匹配的那么将balance标志置为假.
  • 因为两个括号夹一个单括号的情况一定是假的.所以不必担心漏掉某些情况
from pythonds3 import Stack

def match(open, close):
    opens = "[{("
    closes = "]})"
    if opens.index(open) == closes.index(close):
        return True

def main():
    while True:
        stack = Stack()
        balanced = True
        '''交互'''
        stack_str = input("请输入要判断的括号:")
        '''循环判断'''
        i = 0
        while i<len(stack_str) and balanced:
            if stack_str[i] in '[({':
                stack.push(stack_str[i])
            else:
                if stack.is_empty():
                    balanced = False
                else:
                    top = stack.pop()
                    if not match(top, stack_str[i]):
                        balanced = False
            i = i + 1

        if balanced and stack.is_empty():
            print("括号匹配成功!")
        else:
            print("括号匹配失败!")





if __name__ == '__main__':
    main()



3.8 十进制转换成二进制

我们都知道,对于其他进制转换为十进制的方式就是位权展开,十进制到其他进制的转换就是除模取余
例如:按位权展开
在这里插入图片描述
提取公因子:
1+2*(0+2*(0+2*(1+2*(0+2*(1+2*(1+2* 1)))))))
除二取余法就可以看成是 位权展开逆运算,也就是一层层拆括号,把余数取出来的过程。而这种相反方向的过程,恰巧可以用栈来实现。
在这里插入图片描述

import pythonds3
from pythonds3 import Stack


# 输入一个十进制数字,返回二进制数字
def divideBy2(decNumber):
    # 存储余数的栈
    dec = decNumber
    remstack = Stack()
    # 当最后等于零的时候退出
    while decNumber > 0 :
        rem = decNumber % 2
        remstack.push(rem)
        decNumber = decNumber // 2

    binString = ""
    while not remstack.is_empty():
        binString += str(remstack.pop())

    print("十进制数字{}转换成的二进制数字是{}".format(dec, binString))
    return binString


def main():
    num = input("请输入一个十进制数字:")
    divideBy2(int(num))


if __name__ == '__main__':
    main()

在这里插入图片描述
将刚才的代码稍作扩展,即可支持最高十六进制的转换。

from pythonds3 import Stack


# 输入一个十进制数字,返回base进制数字
def baseConverter(decNumber, base):
    # 创建一个储存16进制数字的字符串
    digits = '0123456789ABCDEF'
    dec = decNumber
    # 存储余数的栈
    remstack = Stack()
    # 当最后等于零的时候退出
    while decNumber > 0 :
        rem = decNumber % base
        remstack.push(rem)
        decNumber = decNumber // base

    newString = ""
    while not remstack.is_empty():
        newString += digits[remstack.pop()]

    print("十进制数字{}转换成的{}进制数字是{}".format(dec, base,newString))


def main():
    num1 =input("请输入一个要转换的数字:")
    num2 = input("请输入要转换的进制:")
    baseConverter(int(num1), int(num2))


if __name__ == '__main__':
    main()

在这里插入图片描述


3.9 中缀前缀和后缀表达式

中缀表达式转后缀:
在这里插入图片描述
在这里插入图片描述

from pythonds.basic.stack import Stack
def infixToPostfix(infixexpr):
	prec = {}
	prec["*"] = 3
	prec["/"] = 3
	prec["+"] = 2
	prec["-"] = 2
	prec["("] = 1
	opStack = Stack()
	postfixList = []
	tokenList = infixexpr.split()
	
for token in tokenList:
	if token in "ABCDEFGHIJKLMNOPQRSTUVWXYZ" or token in "0123456789":
	postfixList.append(token)
	elif token == '(':
	opStack.push(token)
	elif token == ')':
	topToken = opStack.pop()
	while topToken != '(':
	postfixList.append(topToken)
	topToken = opStack.pop()
else:
	while (not opStack.isEmpty()) and \
		(prec[opStack.peek()] >= prec[token]):
			postfixList.append(opStack.pop())
	opStack.push(token)
	
while not opStack.isEmpty():
	postfixList.append(opStack.pop())
return " ".join(postfixList)


print(infixToPostfix("A * B + C * D"))
print(infixToPostfix("( A + B ) * C - ( D - E ) * ( F + G )"))

后缀表达式求值:
在这里插入图片描述
在这里插入图片描述

from pythonds.basic.stack import Stack
def postfixEval(postfixExpr):
	operandStack = Stack()
	tokenList = postfixExpr.split()
	for token in tokenList:
		if token in "0123456789":
			operandStack.push(int(token))
		else:
			operand2 = operandStack.pop()
			operand1 = operandStack.pop()
			result = doMath(token,operand1,operand2)
			operandStack.push(result)
	return operandStack.pop()
def doMath(op, op1, op2):
	if op == "*":
		return op1 * op2
	elif op == "/":
		return op1 / op2
	elif op == "+":
		return op1 + op2
	else:
		return op1 - op2
print(postfixEval('7 8 + 3 2 + /'))

3.10 什么是队列

队列是项的有序集合,其中添加新项的一端称为队尾 ,移除项的一段称为队首.
遵循先进先出FIFO原则


3.11 队列抽象数据类型

  • Queue() 创建一个空的新队列。 它不需要参数,并返回一个空队列。
  • enqueue(item) 将新项添加到队尾。 它需要 item 作为参数,并不返回任何内容。
  • dequeue() 从队首移除项。它不需要参数并返回 item。 队列被修改。
  • isEmpty() 查看队列是否为空。它不需要参数,并返回布尔值。
  • size() 返回队列中的项数。它不需要参数,并返回一个整数。

在这里插入图片描述


3.12 Python实现队列

# from pythonds3 import Queue
#
# q = Queue()
# for i in range(5):
#     q.enqueue(i)
# print(q)
#

class Queue:
    def __init__(self):
        self.items = []

    def isEmpty(self):
        return self.items == []

    def enqueue(self, item):
        self.items.insert(0, item)

    def dequeue(self):
        return self.items.pop()

    def size(self):
        return len(self.items)


3.13 模拟:烫手山芋

约瑟夫问题:一个一世纪著名历史学家弗拉维奥·约瑟夫斯的传奇故事。故事讲的是,他和他的 39 个战友被罗马军队包围在洞中。他们决定宁愿死,也不成为罗马人的奴隶。他们围成一个圈,其中一人被指定为第一个人,顺时针报数到第七人,就将他杀死。约瑟夫斯是一个成功的数学家,他立即想出了应该坐到哪才能成为最后一人。最后,他加入了罗马的一方,而不是杀了自己。

假设拿着山芋的孩子在队列的前面。当拿到山芋的时候,这个孩子将先出列再入队列,把他放在队列的最后。经过 num 次的出队入队后,前面的孩子将被永久移除队列。并且另一个周期开始,继续此过程,直到只剩下一个名字(队列的大小为 1)

from pythonds3 import Queue


def hotPotato(namelist, num):
    simqueue = Queue()
    for name in namelist:
        simqueue.enqueue(name)

    while simqueue.size() > 1:
        for i in range(num):
            simqueue.enqueue(simqueue.dequeue())

        simqueue.dequeue()
    return simqueue.dequeue()


print(hotPotato([i for i in range(15)], 7))


3.14 模拟:打印机

在这里插入图片描述


3.15 什么是Deque

deque(双端队列),两边开口.拥有栈和队列的许多特性.

在这里插入图片描述


3.16 Deque抽象数据类型

在这里插入图片描述
在这里插入图片描述


3.17 Python实现Deque

class Deque(object):
    def __init__(self):
        self.items = []
    
    def isEmpty(self):
        return self.items == []
    
    def addFront(self, item):
        self.items.append(item)
        
    def addRear(self, item):
        self.items.insert(0, item)
        
    def removeFront(self):
        return self.items.pop()
    
    def removeRear(self):
        return self.items.pop(0)
    
    def size(self):
        return len(self.items)
        

3.18 回文检查

回文串的判定:从头remove一下和从尾remove一下,比较这两个字符是不是相等.最后的剩下的要么是一个元素,要么就是空白的.

from pythonds3 import Deque


def palchecker(aString):
    chardeque = Deque()

    for ch in aString:
        chardeque.add_rear(ch)

    stillEqual = True
    while chardeque.size() > 1 and stillEqual:
        first = chardeque.remove_front()
        last = chardeque.remove_rear()
        if first != last:
            stillEqual = False

    return stillEqual


print(palchecker("dsflsdf"))
print(palchecker("radar"))

其实,有句话不知该说不该说.下面的代码同样可以实现…

def palchecker(aString):
	return list(aString) == list(aString)[::-1]

3.19 列表

不是所有的语言都有列表这种类型,因此这种概念需要程序员来实现.
列表是项的集合,其中每个项保持相对于其他项的相对位置.称这种类型的列表为无序列表,为了简单起见.我们假设列表不能含有重复项.


3.20 无序列表抽象数据类型

在这里插入图片描述


3.21 实现无序列表:链表

为了实现无序列表.需要构造一个链表.
顺序表的构建需要预先知道数据⼤⼩来申请连续的存储空间,⽽在进⾏扩充 时⼜需要进⾏数据的搬迁,所以使⽤起来并不是很灵活。
链表结构可以充分利⽤计算机内存空间,实现灵活的内存动态管理。

注意,必须明确地指定链表的第一项的位置。一旦我们知道第一个项在哪里,第一个项目
可以告诉我们第二个是什么,等等。外部引用通常被称为链表的头。类似地,最后一个项需
要知道没有下一个项.

节点Node类:

节点类主要分两个部分,一部分是数据,一部分是另一个节点的引用。

无序列表类:

每个无序列表类初始化必须保持对第一个节点的引用。
在这里插入图片描述

class SingleNode(object):
    """单链表的节点"""

    def __init__(self, item):
        self.item = item
        self.next = None


class SingleLinklist(object):
    """定义链表类"""
    def __init__(self):
        self.__head = None

    def is_empty(self):
        """判断是否非空"""
        return self.__head == None

    def length(self):
        """链表长度"""
        cur = self.__head
        size = 0
        while cur.next != None:
            size += 1
            cur = cur.next
        return size

    def travel(self):
        """遍历链表,打印全部节点"""
        cur = self.__head
        while cur != None:
            print(cur.item)
            cur = cur.next

    def add(self, item):
        """头部添加元素"""
        # 先创建一个保存item值的节点
        node = SingleNode(item)
        # 将新节点的next属性指向head
        node.next = self.__head
        # 将head指向这个新节点
        self.__head = node

    def append(self, item):
        """尾部添加元素"""
        node = SingleNode(item)
        # 先判断是否为空链表,如果为空,则将__head指向新节点
        # 如果是空链表,就不可能有next属性
        if self.is_empty():
            self.__head = node
        # 如果不为空列表
        cur = self.__head
        while cur.next != None:
            cur = cur.next
        cur.next = node

    def insert(self, pos, item):
        """指定位置添加元素"""
        # 如果在头节点之前插,则转换为头部插入
        if pos <= 0:
            self.add(item)
        # 如果在尾部之后插,则转换为尾部插入
        elif pos > (self.length() - 1):
            self.append(item)
        else:
            node = SingleNode(item)
            count = 0
            # pre用来指定位置pos的前一个位置pos - 1
            pre = self.__head
            while count < (pos - 1):
                count += 1
                pre = pre.next
            # 先将新节点的next指向插入位置的节点
            node.next = pre.next
            # 再把pre指向的节点的next指向新节点
            pre.next = node

    def remove(self, item):
        """删除节点"""
        cur = self.__head
        pre = None
        while cur != None:
            # 找到了指定元素
            if cur.item == item:
                # 如果第一个就是要删除的节点4
                if not pre:
                    # 将头指针指向头节点的后一个节点
                    self.__head = cur.next
                else:
                    # 将删除位置前一个节点的next指向删除位置的后一个
                    pre.next = cur.next
                break
            else:
                # 继续按链表后移节点
                pre = cur
                cur = cur.next

    def search(self, item):
        """"查找链表节点是否存在"""
        cur = self.__head
        while cur != None:
            if cur.item == item:
                return True
            cur = cur.next
        return False


if __name__ == "__main__":
    ll = SingleLinklist()
    ll.add(1)
    ll.add(2)
    ll.append(3)
    ll.insert(6, 4)
    print("length:", ll.length())
    ll.travel()
    print(ll.search(3))
    print(ll.search(5))
    ll.remove(1)
    print("length:", ll.length())
    ll.travel()



3.22 有序列表抽象数据结构

顾名思义,其中的数据的顺序是排列好的.排序通常是升序或降序,并且我们假设列表项具有已经定义的有意义的比较运算。许多有序列表操作与无序列表的操作相同。
在这里插入图片描述


3.23 实现有序列表

在这里插入图片描述
有序列表的 isEmptysize 方法同无序列表, 因为它们不考虑实际项值.
remove也正常工作.只有searchadd方法需要一些修改

search 由于是有序的,那么我们搜索到某个节点,若这个节点的值大于我们要搜索的值 而且 之前没有项与要搜索的值匹配. 则判定为未找到.提前结束搜索.

def search(self,item):
    current = self.head
    found = False
    stop = False
    while current != None and not found and not stop:
        if current.getData() == item:
            found = True
        else:
            if current.getData() > item:
                stop = True
            else:
                current = current.getNext()
                
     return found

add:由于项已经排序,则节点插入位置也会固定.先找到正确的位置,再进行插入.
在这里插入图片描述

def add(self,item):
    current = self.head
    previous = None
    stop = False
    while current != None and not stop:
        if current.getData() > item:
            stop = True
        else:
            previous = current
            current = current.getNext()
        temp = Node(item)
        if previous == None:
            temp.setNext(self.head)
            self.head = temp
        else:
            temp.setNext(current)
            previous.setNext(temp)

链表分析:
在这里插入图片描述

列表的时间复杂度

在这里插入图片描述


3.24 总结

  • 线性数据结构以有序的方式保存它们的数据。
  • 栈是维持 LIFO,后进先出,排序的简单数据结构。
  • 栈的基本操作是 push , pop 和isEmpty 。
  • 队列是维护 FIFO(先进先出)排序的简单数据结构。
  • 队列的基本操作是 enqueue , dequeue 和 isEmpty 。
  • 前缀,中缀和后缀都是写表达式的方法。
  • 栈对于设计计算解析表达式算法非常有用。
  • 栈可以提供反转特性。
  • 队列可以帮助构建定时仿真。
  • 模拟使用随机数生成器来创建真实情况,并帮助我们回答“假设”类型的问题。
  • Deques是允许类似栈和队列的混合行为的数据结构。
  • deque 的基本操作是 addFront , addRear , removeFront ,removeRear 和 isEmpty 。
  • 列表是项的集合,其中每个项目保存相对位置。
  • 链表实现保持逻辑顺序,而不需要物理存储要求。
  • 修改链表头是一种特殊情况

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值