两个循环O(N^2)超时了
A = [4, 3, 2, 6] 长度n=4
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
探究F(0)和F(1) 关系
F(1)=(3* 6) + (0 * 4) + (1 * 3) + (2 * 2)-(3* 6)+(1* 4)+(1* 3)+(12)=F(0)+(1 * 6)+(1 4)+(1* 3)+(1* 2)-(4* 6)
=F(0)+sum(A)-nA[3]
同理可得 F(2)=F(1)+sum(A)-nA[2] F(3)=F(2)+sum(A)-n*A[1]
class Solution(object):
def maxRotateFunction(self, A):
"""
:type A: List[int]
:rtype: int
"""
if not A:
return 0
n=len(A)
res=0
mysum=0
for i in range(n):
res+=i*A[i]
mysum+=A[i]
pre=res
for j in range(n-1,0,-1):
pre=pre+mysum-n*A[j]
res=max(res,pre)
return res