python leetcode 396. Rotate Function

221 篇文章 2 订阅
本文探讨了在处理数组旋转问题时,如何避免O(N^2)的复杂度过高的问题。通过分析数组旋转函数F(i)的计算过程,我们发现可以通过预计算和动态调整的方法,将原本的双重循环优化为线性时间复杂度O(N)。这种方法不仅提高了算法效率,还展示了如何利用数学推导简化复杂问题。
摘要由CSDN通过智能技术生成

两个循环O(N^2)超时了
A = [4, 3, 2, 6] 长度n=4
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
探究F(0)和F(1) 关系
F(1)=(3* 6) + (0 * 4) + (1 * 3) + (2 * 2)-(3* 6)+(1* 4)+(1* 3)+(12)=F(0)+(1 * 6)+(1 4)+(1* 3)+(1* 2)-(4* 6)
=F(0)+sum(A)-nA[3]
同理可得 F(2)=F(1)+sum(A)-n
A[2] F(3)=F(2)+sum(A)-n*A[1]

class Solution(object):
    def maxRotateFunction(self, A):
        """
        :type A: List[int]
        :rtype: int
        """
        if not A:
            return 0
        n=len(A)
        res=0
        mysum=0
        for i in range(n):
            res+=i*A[i]
            mysum+=A[i]
        pre=res
        for j in range(n-1,0,-1):
            pre=pre+mysum-n*A[j]
            res=max(res,pre)
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值