seq2seq简单总结

Seq2Seq模型由Encoder、Decoder和中间状态向量组成,适用于处理输入和输出序列长度不固定的任务,如机器翻译、文本摘要和阅读理解。在seq2seq+attention中,attention机制解决了Encoder长序列输入时的记忆问题,通过加权求和提升Decoder的预测准确性。应用attention的两种方式包括普通attention和对齐attention,前者在解码时考虑所有Encoder信息,后者关注特定时刻的Encoder输出。
摘要由CSDN通过智能技术生成

1.什么是seq2seq:

最基础的Seq2Seq模型包含了三个部分,即EncoderDecoder以及连接两者的中间状态向量,Encoder通过学习输入,将其编码成一个固定大小的状态向量c,继而将c传给DecoderDecoder再通过对状态向量c的学习来进行输出。EOS表示encoder阶段的结束,Decoder阶段解码的开始。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值