背包问题模板

 01背包模板

int main()  
{  
    int i, j, n, m;  
    while(scanf("%d",&n)!=EOF)  
    {  
        scanf("%d", &m);  
        for(i=0; i<n; i++)  
            scanf("%d%d", &wei[i],&val[i]);//wei[i]为重量,val[i]为价值  
        for(i=0; i<n; i++)  
        {  
            for(j=m; j>=wei[i]; j--)  
                f[j] = max(f[j], f[j-wei[i]]+val[i]);  
        }  
        printf("%d\n",f[m]);  
    }  
    return 0;  
}  

完全背包模板

int main()  
{  
    int t,i,j,k,E,F,m,n;  
    scanf("%d",&t);  
    while(t--)  
    {  
        scanf("%d%d",&E,&F);  
        int c = F-E;  
        for(i = 0 ; i <= c ; i++)  
            f[i]=-INF;  
        scanf("%d",&n);  
        for(i = 0 ; i < n ; i++)  
        {  
            scanf("%d%d",&val[i],&wei[i]);//val[i]为面额,wei[i]为重量  
        }  
        f[0]=0;
        for(i =0 ; i < n ; i++)  
        {  
            for(j = wei[i] ; j <= c ; j++)  
            {  
                f[j] = max(f[j],f[j-wei[i]]+val[i]); 
            }  
        }  

    }  
    return 0;  
}  

多重背包模板

int main()  
{  
    int t,n,m,i,j,k;  
    int w[N],pri[N],num[N],f[N];  
    while(~scanf("%d",&t))  
    {  
        while(t--)  
        {  
            memset(f,0,sizeof(f));  
            scanf("%d%d",&n,&m);//n为总金额,m为大米种类  
            for(i = 0 ; i < m ; i++)  
            {  
                scanf("%d%d%d",&pri[i],&w[i],&num[i]);//num[i]为每种大米的袋数  
            }  
            for(i = 0 ; i < m ; i++)  
            {  
                for(k = 0 ; k < num[i] ; k++)  
                {  
                    for(j = n ; j >= pri[i]; j--)  
                    {  
                        f[j] = max(f[j],f[j-pri[i]]+w[i]);  
                    }  
                }  
            }  
            printf("%d\n",f[n]);  
        }  
    }  
    return 0;  
}  
注意装不装满和初始化有关,如果要装满就把第一项设为0,其余为负无穷

多重背包二进制优化模板

void ZeroOnePack(int cost,int wei)//01  
{  
    int i;  
    for(i = v;i>=cost;i--)  
    {  
        dp[i] = max(dp[i],dp[i-cost]+wei);  
    }  
}  
  
void CompletePack(int cost,int wei)//完全  
{  
    int i;  
    for(i = cost;i<=v;i++)  
    {  
        dp[i] = max(dp[i],dp[i-cost]+wei);  
    }  
}  
  
void MultiplePack(int cost,int wei,int cnt)//多重  
{  
    if(v<=cnt*cost)//如果总容量比这个物品的容量要小,那么这个物品可以直到取完,相当于完全背包  
    {  
        CompletePack(cost,wei);  
        return ;  
    }  
    else//否则就将多重背包转化为01背包  
    {  
        int k = 1;  
        while(k<=cnt)  
        {  
            ZeroOnePack(k*cost,k*wei);  
            cnt = cnt-k;  
            k = 2*k;  
        }  
        ZeroOnePack(cnt*cost,cnt*wei);  
    }  
}  




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值