01背包模板
int main()
{
int i, j, n, m;
while(scanf("%d",&n)!=EOF)
{
scanf("%d", &m);
for(i=0; i<n; i++)
scanf("%d%d", &wei[i],&val[i]);//wei[i]为重量,val[i]为价值
for(i=0; i<n; i++)
{
for(j=m; j>=wei[i]; j--)
f[j] = max(f[j], f[j-wei[i]]+val[i]);
}
printf("%d\n",f[m]);
}
return 0;
}
完全背包模板
int main()
{
int t,i,j,k,E,F,m,n;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&E,&F);
int c = F-E;
for(i = 0 ; i <= c ; i++)
f[i]=-INF;
scanf("%d",&n);
for(i = 0 ; i < n ; i++)
{
scanf("%d%d",&val[i],&wei[i]);//val[i]为面额,wei[i]为重量
}
f[0]=0;
for(i =0 ; i < n ; i++)
{
for(j = wei[i] ; j <= c ; j++)
{
f[j] = max(f[j],f[j-wei[i]]+val[i]);
}
}
}
return 0;
}
多重背包模板
int main()
{
int t,n,m,i,j,k;
int w[N],pri[N],num[N],f[N];
while(~scanf("%d",&t))
{
while(t--)
{
memset(f,0,sizeof(f));
scanf("%d%d",&n,&m);//n为总金额,m为大米种类
for(i = 0 ; i < m ; i++)
{
scanf("%d%d%d",&pri[i],&w[i],&num[i]);//num[i]为每种大米的袋数
}
for(i = 0 ; i < m ; i++)
{
for(k = 0 ; k < num[i] ; k++)
{
for(j = n ; j >= pri[i]; j--)
{
f[j] = max(f[j],f[j-pri[i]]+w[i]);
}
}
}
printf("%d\n",f[n]);
}
}
return 0;
}
注意装不装满和初始化有关,如果要装满就把第一项设为0,其余为负无穷
多重背包二进制优化模板
void ZeroOnePack(int cost,int wei)//01
{
int i;
for(i = v;i>=cost;i--)
{
dp[i] = max(dp[i],dp[i-cost]+wei);
}
}
void CompletePack(int cost,int wei)//完全
{
int i;
for(i = cost;i<=v;i++)
{
dp[i] = max(dp[i],dp[i-cost]+wei);
}
}
void MultiplePack(int cost,int wei,int cnt)//多重
{
if(v<=cnt*cost)//如果总容量比这个物品的容量要小,那么这个物品可以直到取完,相当于完全背包
{
CompletePack(cost,wei);
return ;
}
else//否则就将多重背包转化为01背包
{
int k = 1;
while(k<=cnt)
{
ZeroOnePack(k*cost,k*wei);
cnt = cnt-k;
k = 2*k;
}
ZeroOnePack(cnt*cost,cnt*wei);
}
}