题目链接:Beautifuls numbers
题目大意:给一个区间,问这个区间的漂亮数有多少,漂亮数是指这个数能被这个数每一非零数位的数字给整除
题目思路:好题,首先我们可以很显然的知道,对于一个数来说,每一位都能整除这个数,那么我们可以知道的是这个数一定是这所有非零整数的lcm值,那么这个时候我们可以把问题简化为求这个数是不是所有数的lcm值,那么我们每次去做数位dp的时候可以很轻松的求出来lcm,但是问题在于我们将数转化位了数位,不能够每次都对数位求和算这个数,这样显然dp的内存会炸掉,所以这个时候我们可以考虑一些性质,1-9所有数的lcm是2520,那么最后的lcm值是肯定不会超过这个2520的,所以我们可以直接将数位和求余运算,但是由于lcm值又是2520这么多,所以还是超了内存,所以我们现在需要做的是将最小公倍数进行离散化,那么就可以很轻松的解决这个问题了
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
ll index[2550],dp[20][2520][50],digit[20];
void init(){
int num = 0;
for(int i = 1;i <= 2520;i++)
if(2520%i == 0) index[i] = num++;
}
ll gcd(ll nn,ll mm){
if(mm == 0) return nn;
return mm?gcd(mm,nn%mm):nn;
}
ll Lcm(ll nn,ll mm){
return nn/gcd(nn,mm)*mm;
}
ll dfs(ll pos,ll mod,ll lcm,bool limit){
if(pos == -1) return mod%lcm == 0?1:0;
if(!limit&&~dp[pos][mod][index[lcm]]) return dp[pos][mod][index[lcm]];
ll ans = 0;
ll up = limit?digit[pos]:9;
for(ll i = 0;i <= up;i++){
ll mmod = (mod*10+i)%2520;
ll mlcm = lcm;
if(i) mlcm = Lcm(lcm,i);
ans += dfs(pos-1,mmod,mlcm,limit&&i == up);
}
if(!limit) dp[pos][mod][index[lcm]] = ans;
return ans;
}
ll solve(ll x){
int pos = 0;
while(x){
digit[pos++] = x%10;
x/=10;
}
return dfs(pos-1,0,1,true);
}
int main(){
ll t,l,r;
scanf("%I64d",&t);
memset(dp,-1,sizeof(dp));
init();
while(t--){
scanf("%I64d%I64d",&l,&r);
printf("%I64d\n",solve(r)-solve(l-1));
}
return 0;
}