dPEG与传统PEG以及其他烷基交联剂产品的优势

作为Linker的dPEG

研究证明,通过交联剂将不同物质结合在一起的能力已被证明是诊断和药物输送系统中非常有用的一项技术。由多分散PEG组成的交联剂已被用于制备多种多聚物以及将靶向配体偶联到纳米颗粒上。这通常用于需要非常大的尺寸以提供良好的DMPK性能并且受多分散性影响较小。然而,一些特性,如靶结合或细胞内化,可能会受到大尺寸的不利影响,进而对PEG链长度变化的治疗敏感性也会有所差异。但是,更小的均一dPEG则可以解决这些难题。由小烷基组成的传统交联剂(如SPDP, SIAB, SMCC, EMCS等)多年来也一直是用于生物偶联的支柱,但随着共轭设计变得更加复杂,它们固有的疏水性也导致其应用受到限制。例如,当多个实体分子共轭在一起或进行接近性分析时,连接剂成分对克服固有的疏水性至关重要。虽然有几种烷基连接剂能够以磺化形式存在,可以提高较小的连接剂的水溶性,但它们在较大结构中的应用中仍然存在问题。此外,多种带负电荷的磺酸盐也可能会导致非特异性相互作用。

dPEG产品将烷基连接物的精确性以及PEG的生物相容性结合在一起,没有任何疏水缺陷,具有高度的灵活性,并且其拥有多种独特的结构来确定结构-功能关系并优化偶联性质。在下面的例子中,Vector Laboratories展示了dPEG linker的独特优势。如需购买Vector Laboratories公司产品,咨询产品技术问题,欢迎联系Vector Laboratories授权代理商欣博盛生物。

【小分子偶联物(Small molecule conjugates)

dPEG与传统PEG以及其他烷基交联剂产品的优势

有研究证明了使用dPEG将小分子与诊断显像剂连接起来的优势。例如,当用2 kDa PEG、1 kDa PEG或dPEG24交联剂制备荧光素标记的叶酸二聚体时,具有dPEG24交联的二聚体表现出最高的细胞摄取量。在另一项关于多肽多聚体的研究中,PCMA靶向配体的两种二聚体通过两种均一的PEG4 linker与DOTA结合,提供了一种四聚体,比二聚体和单体结合物具有更好的药代动力学特点(PK)和肿瘤靶向性。

  

多肽偶联物(Peptide Conjugates)

dPEG与传统PEG以及其他烷基交联剂产品的优势

研究表明,dPEG间隔剂(dPEG spacers)可以改善多肽药物偶联物的性能。例如,可以通过使用dPEG4间隔剂提高RGD-隐霉素偶联物的溶解度。此外,dPEG4还可以促进RGD-Glu-MMAE偶联物的有效载荷释放。

寡核苷酸偶联物(Oligo Conjugates)

dPEG与传统PEG以及其他烷基交联剂产品的优势

目前,寡核苷酸药物的递送是限制其应用的主要障碍之一。因此,科研工作者们研发设计了多种基于PEG交联剂的提送系统用于寡核苷酸偶联物的递送,包括抗体偶联物,肽偶联物和脂质偶联物。例如,有多种脂质-寡核苷酸偶联物(lipid-ON conjugates),包括线性和SideWinder®型dPEG4间隔剂,可用于调节药代动力学表现和跨膜递送。

降解物和降解物偶联物(Degraders and Degrader Conjugates)

dPEG与传统PEG以及其他烷基交联剂产品的优势

邻近诱导降解(Proximity-induced degradation)是一种很有前景的新方法,可用于对无法药物治疗的靶点进行药物治疗的研究,且PROTACs是较受欢迎的降解物之一。连接酶和目标蛋白的配体之间的连接物通常是烷基linker或短而均一的PEG4 linker,它们在PROTAC的开发中起着关键作用。通过优化dPEG的长度可以实现高效的降解,并且一些基于dPEG的linker有助于设计“可点击”的PROTAC,从而更快地优化配体组合。

片段偶联物(Fragment Conjugates)

dPEG与传统PEG以及其他烷基交联剂产品的优势

目前,正在研发中的片段偶联物有望克服与抗体大尺寸相关的研究难点,例如抗体药物扩散性和肿瘤组织穿透力差等。由于抗体片段的尺寸较小,连接体linker的特性可以在修饰偶联物的性质方面发挥更大的作用。例如,使用不同长度的dPEG间隔剂将靶向双特异性抗体的TAG72与DOTA进行交联。dPEG48间隔剂能够增加双特异性抗体的流体力学体积,从而减少肾脏清除率,提高肿瘤摄取。其中dPEG48间隔剂提供最高的肿瘤/肾脏比率。Vector Labs的SideWinder®交联剂也被证明对diabody-TCO-MMAE偶联物有益,其中较小体积的生物制剂需要正交PEG修饰剂来防止TCO触发物在体内失活。

如需购买Vector Laboratories公司产品,咨询产品技术问题,欢迎联系Vector Laboratories授权代理商欣博盛生物。

抗体偶联物(Antibody Conjugates)

dPEG与传统PEG以及其他烷基交联剂产品的优势

抗体偶联药物(ADC)利用dPEG间隔剂的特性来抵消疏水性有效载荷的不利影响,并改善PC、PK、BD和毒性。虽然线性dPEG交联剂提供了疏水性降低的有效载荷(例如,特西林),但类Sidewinder™的交联剂已被证明可以增加肿瘤摄取,减少脱靶摄取,并提高ADC对各种有效载荷的耐受性。此外,有研究证实,类BodyArmor™ linker还可以提供额外的结构变量,用于控制有效载荷保护和酶介导的有效载荷释放。

  

纳米颗粒偶联物(NP Conjugates)

dPEG与传统PEG以及其他烷基交联剂产品的优势

纳米颗粒通常通过被动靶向改善药物递送,目前正在探索通过连接靶向目标实现主动靶向。传统而言,这一方法是通过多分散的PEG交联剂实现的,但抗原结合和细胞内化都受到PEG涂层和交联剂中EO单位数量的影响。在一项关于靶向胶束和脂质体的研究中发现,使用不同长度的dPEG交联剂连接整合素或HER2靶向肽,细胞内化取决于dPEG长度、靶向抗原和纳米颗粒的类型。只有dPEG才能优化具有这种粒度的靶向纳米颗粒的的性能。

dPEG在化学和生物学的十字路口

总而言之,dPEG技术是众多生物偶联疗法和临床诊断分析的基础。众多研究已经展示了基于dPEG linker的实用性,并阐述了这种交联剂优越的靶标特异性,其能够改善肿瘤摄取并具有更低的毒性。使用dPEG作为连接剂(linker)、改性剂、嵌段共聚物或功能标签的优势在于它的离散性,这是传统PEG所不具备的。

Vector Laboratories拥有深厚的技术专长和制造能力,可以帮助您设计和开发独特的基于dPEG的产品,以便将其运用到您的偶联方案中。通过BioDesign服务,我们可以为您提供个性化的专家指导咨询,将您的生物偶联疗法提升到一个新的水平。如需购买Vector Laboratories公司产品,咨询产品技术问题,欢迎联系Vector Laboratories授权代理商欣博盛生物。

文献引用

① Giese M.W., Woodman R.H., Hermanson G.T., Davis P.D., et al. (2021). Chapter 9: The Use of Uniform PEG Compounds in the Design of ADCs. The Royal Society of Chemistry, ch. 9, 286-376. [The Royal Society of Chemistry]

② Tiberghien A.C., Levy J.N., Masterson L.A., Patel N.V., Adams L.R., Corbett S., Williams D.G., Hartley J.A., Howard P.W., et al. (2016). Design and Synthesis of Tesirine, a Clinical Antibody-Drug Conjugate Pyrrolobenzodiazepine Dimer Payload. ACS Med Chem Lett., 7(11), 983-987. [PubMed]

③ Giese M., Davis P.D., Woodman R.H., Hermanson G., Pokora A., Vermillion M. et al. (2021). Linker Architectures as Steric Auxiliaries for Altering Enzyme-Mediated Payload Release from Bioconjugates. Bioconjugate Chemistry, 32(10), 2257-2267. [ACSPub]

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件道路场景,包含车辆密集分布复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参者的实时检测分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeekMermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeekMermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值